Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Dall'Osto is active.

Publication


Featured researches published by Luca Dall'Osto.


Plant Physiology | 2007

Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae

Michel Havaux; Luca Dall'Osto; Roberto Bassi

The ch1 mutant of Arabidopsis (Arabidopsis thaliana) lacks chlorophyll (Chl) b. Leaves of this mutant are devoid of photosystem II (PSII) Chl-protein antenna complexes and have a very low capacity of nonphotochemical quenching (NPQ) of Chl fluorescence. Lhcb5 was the only PSII antenna protein that accumulated to a significant level in ch1 mutant leaves, but the apoprotein did not assemble in vivo with Chls to form a functional antenna. The abundance of Lhca proteins was also reduced to approximately 20% of the wild-type level. ch1 was crossed with various xanthophyll mutants to analyze the antioxidant activity of carotenoids unbound to PSII antenna. Suppression of zeaxanthin by crossing ch1 with npq1 resulted in oxidative stress in high light, while removing other xanthophylls or the PSII protein PsbS had no such effect. The tocopherol-deficient ch1 vte1 double mutant was as sensitive to high light as ch1 npq1, and the triple mutant ch1 npq1 vte1 exhibited an extreme sensitivity to photooxidative stress, indicating that zeaxanthin and tocopherols have cumulative effects. Conversely, constitutive accumulation of zeaxanthin in the ch1 npq2 double mutant led to an increased phototolerance relative to ch1. Comparison of ch1 npq2 with another zeaxanthin-accumulating mutant (ch1 lut2) that lacks lutein suggests that protection of polyunsaturated lipids by zeaxanthin is enhanced when lutein is also present. During photooxidative stress, α-tocopherol noticeably decreased in ch1 npq1 and increased in ch1 npq2 relative to ch1, suggesting protection of vitamin E by high zeaxanthin levels. Our results indicate that the antioxidant activity of zeaxanthin, distinct from NPQ, can occur in the absence of PSII light-harvesting complexes. The capacity of zeaxanthin to protect thylakoid membrane lipids is comparable to that of vitamin E but noticeably higher than that of all other xanthophylls of Arabidopsis leaves.


Journal of Biological Chemistry | 2009

Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction.

Nico Betterle; Matteo Ballottari; Simone Zorzan; Silvia de Bianchi; Stefano Cazzaniga; Luca Dall'Osto; Tomas Morosinotto; Roberto Bassi

PsbS plays a major role in activating the photoprotection mechanism known as “non-photochemical quenching,” which dissipates chlorophyll excited states exceeding the capacity for photosynthetic electron transport. PsbS activity is known to be triggered by low lumenal pH. However, the molecular mechanism by which this subunit regulates light harvesting efficiency is still unknown. Here we show that PsbS controls the association/dissociation of a five-subunit membrane complex, composed of two monomeric Lhcb proteins (CP29 and CP24) and the trimeric LHCII-M. Dissociation of this supercomplex is indispensable for the onset of non-photochemical fluorescence quenching in high light, strongly suggesting that protein subunits catalyzing the reaction of heat dissipation are buried into the complex and thus not available for interaction with PsbS. Consistently, we showed that knock-out mutants on two subunits participating to the B4C complex were strongly affected in heat dissipation. Direct observation by electron microscopy and image analysis showed that B4C dissociation leads to the redistribution of PSII within grana membranes. We interpreted these results to mean that the dissociation of B4C makes quenching sites, possibly CP29 and CP24, available for the switch to an energy-quenching conformation. These changes are reversible and do not require protein synthesis/degradation, thus allowing for changes in PSII antenna size and adaptation to rapidly changing environmental conditions.


Journal of Biological Chemistry | 2007

Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation.

Matteo Ballottari; Luca Dall'Osto; Tomas Morosinotto; Roberto Bassi

In this work we analyzed the photosynthetic apparatus in Arabidopsis thaliana plants acclimated to different light intensity and temperature conditions. Plants showed the ability to acclimate into different environments and avoid photoinhibition. When grown in high light, plants had a faster activation rate for energy dissipation (qE). This ability was correlated to higher accumulation levels of a specific photosystem II subunit, PsbS. The photosystem II antenna size was also regulated according to light exposure; smaller antenna size was observed in high light-acclimated plants with respect to low light plants. Different antenna polypeptides did not behave similarly, and Lhcb1, Lchb2, and Lhcb6 (CP24) are shown to undergo major levels of regulation, whereas Lhcb4 and Lhcb5 (CP29 and CP26) maintained their stoichiometry with respect to the reaction center in all growth conditions. The effect of acclimation on photosystem I antenna was different; in fact, the stoichiometry of any Lhca antenna proteins with respect to photosystem I core complex was not affected by growth conditions. Despite this stability in antenna stoichiometry, photosystem I light harvesting function was shown to be regulated through different mechanisms like the control of photosystem I to photosystem II ratio and the association or dissociation of Lhcb polypeptides to photosystem I.


BMC Plant Biology | 2006

Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light.

Luca Dall'Osto; Chiara Lico; Jean Alric; Giovanni Giuliano; Michel Havaux; Roberto Bassi

BackgroundLutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising.ResultsWe have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress.ConclusionLutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins.


The Plant Cell | 2008

Minor Antenna Proteins CP24 and CP26 Affect the Interactions between Photosystem II Subunits and the Electron Transport Rate in Grana Membranes of Arabidopsis

Silvia de Bianchi; Luca Dall'Osto; Giuseppe Tognon; Tomas Morosinotto; Roberto Bassi

We investigated the function of chlorophyll a/b binding antenna proteins Chlorophyll Protein 26 (CP26) and CP24 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout lines that completely lacked one or both of these proteins. All three mutant lines had a decreased efficiency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. Photosynthesis was affected in plants lacking CP24 but not in plants lacking CP26: the former mutant had decreased electron transport rates, a lower ΔpH gradient across the grana membranes, reduced capacity for nonphotochemical quenching, and limited growth. Furthermore, the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, overall electron transport, nonphotochemical quenching, and growth of the double mutant were restored to wild type. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that limitation in electron transport was due to restricted electron transport between QA and QB, which retards plastoquinone diffusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion.


Journal of Biological Chemistry | 2008

Photoprotection in the Antenna Complexes of Photosystem II ROLE OF INDIVIDUAL XANTHOPHYLLS IN CHLOROPHYLL TRIPLET QUENCHING

Milena Mozzo; Luca Dall'Osto; Rainer Hienerwadel; Roberto Bassi; Roberta Croce

In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O2 to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O2. As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.


The Plant Cell | 2007

The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress

Luca Dall'Osto; Stefano Cazzaniga; Helen M. North; Annie Marion-Poll; Roberto Bassi

The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehlers reaction, whose rate is known to be enhanced in abiotic stress conditions.


Molecular Plant | 2010

Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants.

Luca Dall'Osto; Stefano Cazzaniga; Michel Havaux; Roberto Bassi

When light absorbed by plants exceeds the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly de-epoxidized to zeaxanthin in the so-called xanthophyll cycle. Zeaxanthin plays a key role in the protection of photosynthetic organisms against excess light, by promoting rapidly reversible (qE) and long-term (qI) quenching of excited chlorophylls, and preventing lipid oxidation. The photoprotective role of zeaxanthin, either free or bound to light-harvesting complexes (Lhcs), has been investigated by using mutants lacking Chl b (ch1) and/or specific xanthophyll species (npq, lut2). The ch1 mutation causes (1) the absence of Lhcb proteins; (2) strong reduction of the feedback de-excitation (qE); and (3) accumulation of xanthophylls as free pigments into thylakoids. Ch1 mutants showed extreme sensitivity to photo-oxidative stress in high light, due to higher singlet oxygen (¹O₂) release. The double mutant ch1npq1 was more sensitive to photo-oxidation than ch1, showing that zeaxanthin does protect lipids even when free in the membrane. Nevertheless, lack of zeaxanthin had a much stronger impact on the level of lipid peroxidation in Lhcs-containing plants (WT vs npq1) with respect to Lhc-less plants (ch1 vs ch1npq1), implying that its protective effect is enhanced by interaction with antenna proteins. It is proposed that the antioxidant capacity of zeaxanthin is empowered in the presence of PSII-LHCs-Zea complexes, while its effect on enhancement of qE only provides a minor contribution. Comparison of the sensitivity of WT vs npq1 plants to exogenous ¹O₂ suggests that besides the scavenging of ¹O₂, at least one additional mechanism is involved in chloroplast photoprotection.


Journal of Biological Chemistry | 2007

Different Roles of α- and β-Branch Xanthophylls in Photosystem Assembly and Photoprotection

Luca Dall'Osto; Alessia Fiore; Stefano Cazzaniga; Giovanni Giuliano; Roberto Bassi

Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively α-branch (chy1chy2lut5) or β-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of β-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that α-branch (lutein) and β-branch (zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection.


Biochimica et Biophysica Acta | 2012

Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes

Matteo Ballottari; Julien Girardon; Luca Dall'Osto; Roberto Bassi

Photoautotrophic organisms, the major agent of inorganic carbon fixation into biomass, convert light energy into chemical energy. The first step of photosynthesis consists of the absorption of solar energy by pigments binding protein complexes named photosystems. Within photosystems, a family of proteins called Light Harvesting Complexes (LHC), responsible for light harvesting and energy transfer to reaction centers, has evolved along with eukaryotic organisms. Besides light absorption, these proteins catalyze photoprotective reactions which allowed functioning of oxygenic photosynthetic machinery in the increasingly oxidant environment. In this work we review current knowledge of LHC proteins serving Photosystem II. Balance between light harvesting and photoprotection is critical in Photosystem II, due to the lower quantum efficiency as compared to Photosystem I. In particular, we focus on the role of each antenna complex in light harvesting, energy transfer, scavenging of reactive oxygen species, chlorophyll triplet quenching and thermal dissipation of excess energy. This article is part of a Special Issue entitled: Photosystem II.

Collaboration


Dive into the Luca Dall'Osto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Havaux

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge