Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca De Marchi is active.

Publication


Featured researches published by Luca De Marchi.


Smart Materials and Structures | 2012

Acoustic emission localization in plates with dispersion and reverberations using sparse PZT sensors in passive mode

Alessandro Perelli; Luca De Marchi; Alessandro Marzani; Nicolò Speciale

A strategy for the localization of acoustic emissions (AE) in plates with dispersion and reverberation is proposed. The procedure exploits signals received in passive mode by sparse conventional piezoelectric transducers and a three-step processing framework. The first step consists in a signal dispersion compensation procedure, which is achieved by means of the warped frequency transform. The second step concerns the estimation of the differences in arrival time (TDOA) of the acoustic emission at the sensors. Complexities related to reflections and plate resonances are overcome via a wavelet decomposition of cross-correlating signals where the mother function is designed by a synthetic warped cross-signal. The magnitude of the wavelet coefficients in the warped distance?frequency domain, in fact, precisely reveals the TDOA of an acoustic emission at two sensors. Finally, in the last step the TDOA data are exploited to locate the acoustic emission source through hyperbolic positioning. The proposed procedure is tested with a passive network of three/four piezo-sensors located symmetrically and asymmetrically with respect to the plate edges. The experimentally estimated AE locations are close to those theoretically predicted by the Cram?r?Rao lower bound.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2010

Warped basis pursuit for damage detection using lamb waves

Luca De Marchi; Massimo Ruzzene; Buli Xu; Emanuele Baravelli; N. Speciale

This paper presents a novel time-frequency procedure based on the warped frequency transform (WFT) to process multi-mode and dispersive Lamb waves for structural health monitoring (SHM) applications. The proposed signal processing technique is applied to time waveforms recorded at an array of scan points after waveguide excitation. The WFT is combined with a basis pursuit algorithm to extract the distance traveled by the ultrasonic waves even in the case of multi-modal dispersive propagation associated with broadband excitation of the waveguide. This is obtained through a decomposition of the acquired signals using dictionaries composed by optimized atomic functions which are designed to match the spectro-temporal structure of the various propagating modes. The warped basis pursuit (W-BP) analysis of several acquired waveforms results in distance signals that can be combined through classical beamforming techniques for acoustical source imaging purposes. A masking procedure is also proposed to suppress imaging noise. This approach is tested on experimental data obtained by broadband guided wave excitation in a 1-mm-thick aluminum plate with an artificially introduced through crack and tiny holes, followed by multiple waveguide displacement recording through a scanning laser Doppler vibrometer. Dispersion compensation, high-resolution source, and defect imaging are demonstrated even in domain regions that are not directly accessible for measurement.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011

Double-channel, frequency-steered acoustic transducer with 2-D imaging capabilities

Emanuele Baravelli; Matteo Senesi; Massimo Ruzzene; Luca De Marchi; Nicolò Speciale

A frequency-steerable acoustic transducer (FSAT) is employed for imaging of damage in plates through guided wave inspection. The FSAT is a shaped array with a spatial distribution that defines a spiral in wavenumber space. Its resulting frequency-dependent directional properties allow beam steering to be performed by a single two-channel device, which can be used for the imaging of a two-dimensional half-plane. Ad hoc signal processing algorithms are developed and applied to the localization of acoustic sources and scatterers when FSAT arrays are used as part of pitch-catch and pulse-echo configurations. Localization schemes rely on the spectrogram analysis of received signals upon dispersion compensation through frequency warping and the application of the frequency-angle map characteristic of FSAT. The effectiveness of FSAT designs and associated imaging schemes are demonstrated through numerical simulations and experiments. Preliminary experimental validation is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The presented results demonstrate the frequency-dependent directionality of the spiral FSAT and suggest its application for frequency-selective acoustic sensors, for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.


Ultrasonics | 2015

Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification

Marco Miniaci; Alessandro Marzani; Nicola Testoni; Luca De Marchi

In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2015

Compressive sensing of full wave field data for structural health monitoring applications

Tommaso Di Ianni; Luca De Marchi; Alessandro Perelli; Alessandro Marzani

Numerous nondestructive evaluations and structural health monitoring approaches based on guide waves rely on analysis of wave fields recorded through scanning laser Doppler vibrometers (SLDVs) or ultrasonic scanners. The informative content which can be extracted from these inspections is relevant; however, the acquisition process is generally time-consuming, posing a limit in the applicability of such approaches. To reduce the acquisition time, we use a random sampling scheme based on compressive sensing (CS) to minimize the number of points at which the field is measured. The CS reconstruction performance is mostly influenced by the choice of a proper decomposition basis to exploit the sparsity of the acquired signal. Here, different bases have been tested to recover the guided waves wave field acquired on both an aluminum and a composite plate. Experimental results show that the proposed approach allows a reduction of the measurement locations required for accurate signal recovery to less than 34% of the original sampling grid.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2013

Model-based compressive sensing for damage localization in lamb wave inspection

Alessandro Perelli; Tommaso Di Ianni; Alessandro Marzani; Luca De Marchi; Guido Masetti

Compressive sensing (CS) has emerged as a potentially viable technique for the efficient compression and analysis of high-resolution signals that have a sparse representation in a fixed basis. In this work, we have developed a CS approach for ultrasonic signal decomposition suitable to achieve high performance in Lamb-wave-based defect detection procedures. In the proposed approach, a CS algorithm based on an alternating minimization (AM) procedure is adopted to extract the information about both the system impulse response and the reflectivity function. The implemented tool exploits the dispersion compensation properties of the warped frequency transform as a means to generate the sparsifying basis for the signal representation. The effectiveness of the decomposition task is demonstrated on synthetic signals and successfully tested on experimental Lamb waves propagating in an aluminum plate. Compared with available strategies, the proposed approach provides an improvement in the accuracy of wave propagation path length estimation, a fundamental step in defect localization procedures.


Journal of Intelligent Material Systems and Structures | 2013

Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms

Alessandro Marzani; Luca De Marchi

In this study, an inverse procedure based on stress guided waves is proposed for the characterization of the elastic moduli of composite plates. The characterization is carried out via genetic algorithms by minimizing the discrepancy between experimental and numerical group delay curves for different directions of propagation along the plate. Experimentally, for a given distance source–receiver, the group delay curves are obtained by processing the guided waves time–transient signals via a time–frequency transform. For the same distance, a fast and reliable semi-analytical finite element formulation is used for the forward computation of the group delay curves. Here, pseudo-experimental data, generated by means of the semi-analytical finite element model for an assumed known set of elastic coefficients, are used to test the reliability of the proposed procedure. The results obtained for three different plates are promising. Since semi-analytical finite element formulations can also handle plates with uniform curvature, this identification procedure could be extended to composite shells. The authors believe that this procedure could support the on-field nondestructive evaluation and structural health monitoring of composite plates and shells.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012

Guided wave expansion in warped curvelet frames

Luca De Marchi; Emanuele Baravelli; Massimo Ruzzene; Nicolò Speciale; Guido Masetti

Lamb wave testing for structural health monitoring (SHM) often relies on analysis of wavefields recorded through scanning laser Doppler vibrometers (SLDVs) or ultrasonic scanners. Damage detection and characterization with these techniques requires isolation of defect-induced reflections in the wavefield from the injected wave packet and from scattering events associated with structural features such as boundaries, rivets, joints, etc. This is a challenging task when dealing with complex structures and multimodal, dispersive propagation regimes, whereby various wave contributions in both the time/space and the frequency/wavenumber domain overlap. A new mathematical tool named warped curvelet frames (WCFs) is proposed to effectively decompose the recorded wavefields. The presented technique results from the combination of two operators, i.e., the curvelet transform (CT) and the warped frequency transform (WFT). The CT provides an optimally sparse representation of nondispersive wave propagators. Combining the CT with the WFT allows for a flexible analysis of multimodal wave propagation in dispersive media. Exploiting the spatial and temporal localization of curvelets, as well as the spectro-temporal adaptation of the analysis frame to the characteristics of each propagating mode, provided by frequency warping, a convenient decomposition of guided waves is achieved and relevant contributions can be effectively isolated. The proposed approach is validated through dedicated simulations and further tested experimentally to demonstrate the effectiveness of the method in separating guided wave modes corresponding to acoustic events in close spatial proximity.


Journal of Sensors | 2013

Augmented Reality to Support On-Field Post-Impact Maintenance Operations on Thin Structures

Luca De Marchi; Alessandro Ceruti; Alessandro Marzani; Alfredo Liverani

This paper proposes an augmented reality (AR) strategy in which a Lamb waves based impact detection methodology dynamically interacts with a head portable visualization device allowing the inspector to see the estimated impact position (with its uncertainty) and impact energy directly on the plate-like structure. The impact detection methodology uses a network of piezosensors bonded on the structure to be monitored and a signal processing algorithm (the Warped Frequency Transform) able to compensate for dispersion the acquired waveforms. The compensated waveforms yield to a robust estimation of Lamb waves difference in distance of propagation (DDOP), used to feed hyperbolic algorithms for impact location determination, and allow an estimation of the uncertainty of the impact positioning as well as of the impact energy. The outputs of the impact methodology are passed to a visualization technology that yielding their representation in Augmented Reality (AR) is meant to support the inspector during the on-field inspection/diagnosis as well as the maintenance operations. The inspector, in fact, can see interactively in real time the impact data directly on the surface of the structure. To validate the proposed approach, tests on an aluminum plate are presented. Results confirm the feasibility of the method and its exploitability in maintenance practice.


Digital Signal Processing | 2015

Best basis compressive sensing of guided waves in structural health monitoring

Alessandro Perelli; Luca De Marchi; Luca Flamigni; Alessandro Marzani; Guido Masetti

A novel signal compression and reconstruction procedure suitable for guided wave based structural health monitoring (SHM) applications is presented. The proposed approach combines the wavelet packet transform and frequency warping to generate a sparse decomposition of the acquired dispersive signal. The sparsity of the signal in the considered representation is exploited to develop data compression strategy based on the Best-Basis Compressive sensing (CS) theory. The proposed data compression strategy has been compared with the transform encoder based on the Embedded Zerotree (EZT), a well known data compression algorithm. These approaches are tested on experimental Lamb wave signals obtained by acquiring acoustic emissions in a 1 m 2 aluminum plate with conventional piezoelectric sensors. The performances of the two methods are analyzed by varying the compression ratio in the range 40-80%, and measuring the discrepancy between the original and the reconstructed signal. Results show the improvement in signal reconstruction with the use of the modified CS framework with respect to transform-encoders such as the EZT algorithm with Huffman coding. Compressive Sensing based on wavelet analysis and frequency warping operator.Frequency warping Wavelet analysis.Compression of Ultrasonic Lamb Waves.Acoustic emission localization in plates with dispersion and reverberation.Procedure is tested with a passive network of three piezo-sensors.

Collaboration


Dive into the Luca De Marchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Ruzzene

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge