Luca Ferraro
University of Ferrara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luca Ferraro.
Brain Research | 2002
Marco Pistis; Luca Ferraro; Luigi Pira; Giovanna Flore; Sergio Tanganelli; Gian Luigi Gessa; Paola Devoto
Cannabinoid modulation of prefrontal cortex and hippocampus neuronal functioning has been correlated to the disruptive action of marijuana on memory tasks. This study investigates the effects of Δ9-tetrahydrocannabinol (Δ9-THC) on dopamine, glutamate and GABA levels in vivo by brain microdialysis in the prefrontal cortex. Δ9-THC (1 mg/kg, i.v.) significantly increased extracellular dopamine and glutamate levels and decreased GABA levels. These effects were prevented by the cannabinoid antagonist SR141716A (1 mg/kg, i.v.), which per se was ineffective. These results suggest that Δ9-THC disrupt the normal interplay between neurotransmitters in this area and may bear relevance in understanding neuronal mechanisms underlying cannabinoid-induced cognitive deficits.
Neuropsychopharmacology | 1999
Luca Ferraro; Tiziana Antonelli; Sergio Tanganelli; William T. O'Connor; Miguel Pérez de la Mora; J. Méndez-Franco; Francis A. Rambert; Kjell Fuxe
The effects of modafinil on glutamatergic and GABAergic transmission in the rat medial preoptic area (MPA) and posterior hypothalamus (PH), are analysed. Modafinil (30–300 mg/kg) increased glutamate and decreased GABA levels in the MPA and PH. Local perfusion with the GABAA agonist muscimol (10 μM), reduced, while the GABAA antagonist bicuculline (1 μM and 10 μM) increased glutamate levels. The modafinil (100 mg/kg)-induced increase of glutamate levels was antagonized by local perfusion with bicuculline (1 μM). When glutamate levels were increased by the local perfusion with the glutamate uptake inhibitor L-trans-PDC (0.5 mM), modafinil produced an additional enhancement of glutamate levels. Modafinil (1–33 μM) failed to affect [3H]glutamate uptake in hypothalamic synaptosomes and slices. These findings show that modafinil increases glutamate and decreases GABA levels in MPA and PH. The evidence that bicuculline counteracts the modafinil-induced increase of glutamate levels strengthens the evidence for an inhibitory GABA/glutamate interaction in the above regions controlling the sleep-wakefulness cycle.
European Journal of Pharmacology | 1996
Luca Ferraro; Sergio Tanganelli; William T. O'Connor; Tiziana Antonelli; Francis A. Rambert; Kjell Fuxe
The present in vivo microdialysis study demonstrated that the subcutaneous injection of modafinil (diphenyl-methyl-sulfinyl-2-acetamide) in doses of 30-300 mg/kg dose dependently increased dopamine release from the intermediate level of the nucleus accumbens along the rostro-caudal axis of the halothane anaesthetized rat. The effect of modafinil in a dose of 100 mg/kg was counteracted by the local perfusion in the nucleus accumbens with the GABAB receptor antagonist phaclofen (beta-p-chlorophenyl-gamma-aminopropyl-phosphonic acid) (50 microM), the GABAA agonist muscimol (3-hydroxy-5-aminomethyl-isoxazolol) (10 microM) and the neuronal GABA reuptake inhibitor SKF89976A (4,4-diphenyl-3-butenyl-nipecotic acid) (0.1 microM), whereas it was increased by the GABAB receptor agonist (-)-baclofen [beta-(p-chlorophenyl-gamma-aminobutyric acid)] (10 microM). In addition, the modafinil-induced increase of dopamine release was associated with a significant reduction of accumbens GABA release. These results suggest that the dopamine releasing action of modafinil in the rat nucleus accumbens is secondary to its ability to reduce local GABAergic transmission, which leads to a reduction of GABAA receptor signaling on the dopamine terminals.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Giampaolo Mereu; Mauro Fà; Luca Ferraro; Raffaele Cagiano; Tiziana Antonelli; Maria Tattoli; Veronica Ghiglieri; Sergio Tanganelli; Gian Luigi Gessa; Vincenzo Cuomo
To investigate the possible long-term consequences of gestational exposure to cannabinoids on cognitive functions, pregnant rats were administered with the CB1 receptor agonist WIN 55,212-2 (WIN), at a dose (0.5 mg/kg) that causes neither malformations nor overt signs of toxicity. Prenatal WIN exposure induced a disruption of memory retention in 40- and 80-day-old offspring subjected to a passive avoidance task. A hyperactive behavior at the ages of 12 and 40 days was also found. The memory impairment caused by the gestational exposure to WIN was correlated with alterations of hippocampal long-term potentiation (LTP) and glutamate release. LTP induced in CA3–CA1 synapses decayed faster in brain slices of rats born from WIN-treated dams, whereas posttetanic and short-term potentiation were similar to the control group. In line with LTP shortening, in vivo microdialysis showed a significant decrease in basal and K+-evoked extracellular glutamate levels in the hippocampus of juvenile and adult rats born from WIN-treated dams. A similar reduction in glutamate outflow was also observed in primary cell cultures of hippocampus obtained from pups born from mothers exposed to WIN. The decrease in hippocampal glutamate outflow appears to be the cause of LTP disruption, which in turn might underlie, at least in part, the long-lasting impairment of cognitive functions caused by the gestational exposure to this cannabinoid agonist. These findings could provide an explanation of cognitive alterations observed in children born from women who use marijuana during pregnancy.
Neuroscience Letters | 1998
Luca Ferraro; Tiziana Antonelli; William T. O'Connor; Sergio Tanganelli; Francis A. Rambert; Kjell Fuxe
The effects of the anti-narcoleptic drug modafinil (30-300 mg/kg i.p.) on GABA and glutamate release were evaluated in the basal ganglia of the conscious rat, by using the microdialysis technique. Modafinil (100 mg/kg) inhibited striatal (85+/-4% of basal values) and pallidal (85+/-2%) GABA release without influencing local glutamate release. At the highest dose (300 mg/kg), modafinil induced a further reduction of pallidal (75+/-2%) but not striatal (82+/-7%) GABA release and increased striatal (134+/-11%) but not pallidal glutamate release. On the contrary, in the substantia nigra modafinil reduced GABA release only at the 300 mg/kg dose (59+/-5%) without affecting glutamate release. The preferential reduction in striato-pallidal GABA release at the 100 mg/kg dose of modafinil suggests that modafinil may be useful in the treatment of Parkinsonian diseases.
Neuroscience Letters | 1996
Luca Ferraro; Sergio Tanganelli; William T. O'Connor; Tiziana Antonelli; Francis A. Rambert; Kjell Fuxe
The effect of modafinil on endogenous gamma-aminobutyric acid (GABA) release in the medial preoptic area (MPA) and posterior hypothalamus (PH) and the role of local 5-HT3 receptors in this effect was investigated in the awake rat using in vivo microdialysis. Modafinil (30-100 mg/kg i.p.) dose-dependently decreased GABA release from the MPA, while only the 100 mg/kg dose markedly reduced GABA release in the PH. The modafinil (100 mg/kg) induced inhibition of GABA release in the MPA and the PH was partially counteracted by the 5-HT3 receptor antagonist MDL72222 (1 microM) when perfused locally alone or together with the non-selective 5-HT receptor antagonist methysergide (1 microM). Thus, the reduction of GABA transmission induced by modafinil in the MPA and in the PH, at least in part, involves local 5-HT3 receptors. The GABA release inhibition by modafinil in the above areas may be relevant for its vigilance promoting action.
Neuroreport | 1997
Luca Ferraro; Tiziana Antonelli; O'Connor Wt; Sergio Tanganelli; Francis A. Rambert; Kjell Fuxe
THE antinarcoleptic drug modafinil [(diphenyl-methyl)sulfinyl-2-acetamide; Modiodal] dose-dependently inhibits the activity of GABA neurons in the cerebral cortex and in the nucleus accumbens, as well as in sleep-related brain areas such as the medial preoptic area and the posterior hypothalamus. This study examined the effects of modafinil (30–300 mg/kg, i.p.) on dialysate glutamate and GABA levels in the ventromedial (VMT) and ventrolateral (VLT) thalamus and hippocampal formation (Hip) of the awake rat. The results show a maximal increase in glutamate release in these brain regions at the 100 mg/kg dose, associated with a lack of effect on GABA release. Thus modafinil may increase excitatory glutamatergic transmission in these regions, altering the balance between glutamate and GABA transmission.
Neuroscience | 1994
Sergio Tanganelli; W.T. O'Connor; Luca Ferraro; Clementina Bianchi; L. Beani; Urban Ungerstedt; Kjell Fuxe
The main aim of the present study was to investigate the effects of local perfusion with the tridecapeptide neurotensin on extracellular GABA and dopamine levels in the nucleus accumbens of the halothane-anaesthetized rat, using in vivo microdialysis. In an initial set of characterization studies we examined the Na+ dependence of neurotransmitter release by local perfusion with ouabain, veratridine and tetrodotoxin. Local perfusion with the Na+ ATPase inhibitor ouabain (10 microM) or the Na+ channel agonist veratridine (20 microM) perfused into the nucleus accumbens increased both extracellular GABA and dopamine levels. The Na+ channel antagonist tetrodotoxin (1 microM) consistently decreased (24% of basal) dopamine levels, while even at 10 microM it did not affect GABA. However, tetrodotoxin (10 microM) abolished the veratridine-induced increase in both GABA and dopamine, demonstrating that Na(+)-dependent neuronal activity is involved in this release mechanism. In a second set of experiments a hypothesis for a functional link between neurotensin, dopamine and GABA in the medial nucleus accumbens was tested. Towards this aim, the effects of local perfusion with a high 1 microM concentration of neurotensin into the nucleus accumbens increased both GABA (210% of basal value) and dopamine (145% of basal) release. However, a low (10 nM) concentration of neurotensin again increased GABA release (160% of basal), but decreased that of dopamine (75% of basal value). Furthermore, the local perfusion with the GABAA receptor antagonist bicuculline abolished the neurotensin (10 nM) induced inhibition of dopamine release without affecting the increase in GABA release. These findings suggest that neurotensin modulates both GABA and dopamine neurotransmission in the nucleus accumbens.(ABSTRACT TRUNCATED AT 250 WORDS)
European Journal of Pharmacology | 1995
Sergio Tanganelli; Miguel Pérez de la Mora; Luca Ferraro; J. Méndez-Franco; L. Beani; Francis A. Rambert; Kjell Fuxe
Abstract The acute or chronic administration of modafinil, (diphenyl-methyl-sulfinyl-2-acetamide, 30 mg/kg s.c.) decreased γ-aminobutyric acid (GABA) outflow from the cerebral cortex of freely moving guinea pigs and rats. In 5,7-dihydroxytryptamine intracerebroventricularly pretreated guinea pigs, the effect of modafinil on GABA outflow was reversed and the noradrenaline cortical levels increased. Prazosin (35,8 ng/kg i.p.) blocked the drug-induced increase in GABA efflux. In vitro experiments, performed in rat cortical slices, showed that modafinil failed to affect [3H]GABA release and uptake as well as glutamic acid decarboxylase activity. In conclusion, our results suggest that the balance between central noradrenaline and 5-hydroxytryptamine transmission is important for the regulation by modafinil of the GABAergic release in the cerebral cortex.
Archive | 1992
Sergio Tanganelli; Kjell Fuxe; Luca Ferraro; Ann Marie Janson; Clementina Bianchi
SummaryThe effects of modafmil on acetylcholine and GABA outflow from the cerebral cortex of awake freely moving guinea pigs provided with an epidural cup were studied. In the dose range of 3–30 mg/kg s. c. modafmil produced a dose dependent significant inhibition of GABA outflow without influencing cortical acetylcholine release. Methysergide (2 mg/kg, i.p.) and ketanserin (0.5 mg/kg, i. p.) but not prazosin (0.14 mg/kg, i. p.) counteracted the inhibitory action of modafinil on cortical GABA outflow. Modafinil both acutely and chronically in the same dose range increased striatal 5-HIAA levels and 5-HT utilization in the rat (acute) and mouse (chronic). The action on cortical GABA release may be dependent on activity at 5-HT2 receptors, since the action of modafmil in this respect is blocked by the non-selective 5-HT antagonist methysergide and the 5-HT2 antagonist ketanserin. The involvement of 5-HT mechanisms in the inhibitory action of modafmil on cortical GABA release is also suggested by the findings that 5-HT metabolism may become increased by modafmil at least in the striatum. The reduction of cortical GABA outflow via 5-HTZ receptors by modafmil is probably related to some of its actions on the central nervous system including behavioural effects.