Luca Galluzzi
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luca Galluzzi.
Cell Death and Disease | 2010
Eugenia Morselli; Maria Chiara Maiuri; Maria Markaki; Evgenia Megalou; Angela Pasparaki; Konstantinos Palikaras; Alfredo Criollo; Luca Galluzzi; Shoaib Ahmad Malik; Ilio Vitale; Mickaël Michaud; Frank Madeo; Nektarios Tavernarakis; Guido Kroemer
Caloric restriction and autophagy-inducing pharmacological agents can prolong lifespan in model organisms including mice, flies, and nematodes. In this study, we show that transgenic expression of Sirtuin-1 induces autophagy in human cells in vitro and in Caenorhabditis elegans in vivo. The knockdown or knockout of Sirtuin-1 prevented the induction of autophagy by resveratrol and by nutrient deprivation in human cells as well as by dietary restriction in C. elegans. Conversely, Sirtuin-1 was not required for the induction of autophagy by rapamycin or p53 inhibition, neither in human cells nor in C. elegans. The knockdown or pharmacological inhibition of Sirtuin-1 enhanced the vulnerability of human cells to metabolic stress, unless they were stimulated to undergo autophagy by treatment with rapamycin or p53 inhibition. Along similar lines, resveratrol and dietary restriction only prolonged the lifespan of autophagy-proficient nematodes, whereas these beneficial effects on longevity were abolished by the knockdown of the essential autophagic modulator Beclin-1. We conclude that autophagy is universally required for the lifespan-prolonging effects of caloric restriction and pharmacological Sirtuin-1 activators.
Applied and Environmental Microbiology | 2004
Luca Galluzzi; Antonella Penna; Elena Bertozzini; Magda Vila; Esther Garcés; Mauro Magnani
ABSTRACT The marine dinoflagellate genus Alexandrium includes a number of species which produce neurotoxins responsible for paralytic shellfish poisoning (PSP), which in humans may cause muscular paralysis, neurological symptoms, and, in extreme cases, death. A. minutum is the most widespread toxic PSP species in the western Mediterranean basin. The monitoring of coastal waters for the presence of harmful algae also normally involves microscopic examinations of phytoplankton populations. These procedures are time consuming and require a great deal of taxonomic experience, thus limiting the number of specimens that can be analyzed. Because of the genetic diversity of different genera and species, molecular tools may also help to detect the presence of target microorganisms in marine field samples. In this study, we developed a real-time PCR-based assay for rapid detection of all toxic species of the Alexandrium genus in both fixative-preserved environmental samples and cultures. Moreover, we developed a real-time quantitative PCR assay for the quantification of A. minutum cells in seawater samples. Alexandrium genus-specific primers were designed on the 5.8S rDNA region. Primer specificity was confirmed by using BLAST and by amplification of a representative sample of the DNA of other dinoflagellates and diatoms. Using a standard curve constructed with a plasmid containing the ITS1-5.8S-ITS2 A. minutum sequence and cultured A. minutum cells, we determined the absolute number of 5.8S rDNA copies per cell. Consequently, after quantification of 5.8S rDNA copies in samples containing A. minutum cells, we were also able to estimate the number of cells. Several fixed A. minutum bloom sea samples from Arenys Harbor (Catalan Coast, Spain) were analyzed using this method, and quantification results were compared with standard microscopy counting methods. The two methods gave comparable results, confirming that real-time PCR could be a valid, fast alternative procedure for the detection and quantification of target phytoplankton species during coastal water monitoring.
Cell Death & Differentiation | 2009
Boris Zhivotovsky; Luca Galluzzi; Oliver Kepp; Guido Kroemer
Lethal mitochondrial membrane permeabilization has been depicted as the result of two fundamentally distinct processes, namely primary mitochondrial outer membrane permeabilization (MOMP) versus permeability transition (PT) ignited at the level of the mitochondrial inner membrane. MOMP and PT have been connected to apoptosis and necrosis, respectively. Moreover, it has been thought that MOMP was mediated by pro-apoptotic multidomain proteins of the Bcl-2 family (Bax and Bak), which would operate near-to-independently from the permeability transition pore complex (PTPC) composed by voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT) and cyclophilin D. A recent paper in Molecular and Cellular Biology now reveals the obligate contribution of one particular ANT isoform to the execution of developmental and homeostatic cell death in Caenorhabditis elegans. The physical and functional interaction between CED-9, the sole multidomain Bcl-2 protein of C. elegans, and ANT emphasizes the existence of an intricate, phylogenetically conserved crosstalk between Bcl-2 family proteins and constituents of the PTPC. In this issue of Cell Death and Differentiation, Malorni et al. further corroborate this notion by showing that type 2 transglutaminase (TG2) is essential for the correct assembly/function of ANT1, and that, at least in some experimental settings, TG2 might be required to enable and/or stabilize the pro-apoptotic association of Bax with ANT1.
Journal of Applied Phycology | 2010
Luca Galluzzi; Elena Bertozzini; Antonella Penna; Federico Perini; Esther Garcés; Mauro Magnani
A number of species belonging to the genus Alexandrium are among the main toxic microalgae responsible for Harmful Algal Blooms (HABs). The monitoring of coastal waters for the presence of these microalgae is essential to identify correlations between cell abundances and environmental factors that regulate bloom dynamics. In the attempt to improve the monitoring sensitivity and the rapidity at which a large number of field samples can be processed, several molecular methods for the detection of genetically distinct HAB species have been developed during the last years. In particular, real-time PCR has been shown to be a powerful method for quantitative detection of HAB species in environmental samples. When a plasmid is used as a standard, the knowledge of the amount of target gene per cell is essential for the determination of the cell number in the field sample. In this study, we analyzed the rRNA gene content variability in several Alexandrium catenella and Alexandrium taylori strains isolated from the Mediterranean Sea using a real-time PCR-based approach. The rRNA gene content was also analyzed in different growth phases, from early exponential to stationary conditions. The results showed a general variability in the rRNA gene content depending on the strain and, for the species A. taylori, in relation also to the growth phase. These results should be taken into account for the application of the real-time quantitative PCR-based techniques for monitoring purposes in coastal seawaters.
Journal of Microbiological Methods | 2011
Elena Bertozzini; Luca Galluzzi; Antonella Penna; Mauro Magnani
Microalgae are considered one of the best candidates for biofuel production due to their high content in neutral lipids, therefore, an accurate quantification of these lipids in microalgae is fundamental for the identification of the better candidates as biodiesel source. Nile red is a fluorescent dye widely employed for the quantification of neutral lipids in microalgae. Usually, the fluorescence intensity of the stained samples is correlated to the neutral lipid content determined with standard methods, in order to draw a standard curve and deduce the neutral lipids concentration of the unknown samples positioning their fluorescence intensity values on the curve. Standard methods used for the neutral lipids determination are laborious and often implying solvent extraction and/or other transformation (i.e. saponification or transesterification) of the sample. These methods are also time consuming and may give rise to an underestimation of the lipid content due to variable extraction yields. The approach described in this paper combines the standard addition method and the fluorometric staining using Nile red, avoiding the association of traditional neutral lipids quantification methods to the fluorometric determination. After optimization of instrument parameters and staining conditions, a linear correlation between the fluorescence intensity of each sample stained with the Nile red and its neutral lipids content deduced with the standard addition method was identified. The obtained curve allowed the direct determination of neutral lipids content maintaining a linearity range from 0.12 to 12 μg of neutral lipids per ml of sample, without need of pre-concentration. This curve was then used in the quantification of the neutral lipids content in culture of Skeletonema marinoi (Bacillariophyceae) at different days from the inoculum. This method was also successfully applied on Chaetoceros socialis (Bacillariophyceae) and Alexandrium minutum (Dinophyceae).
Journal of Pineal Research | 2014
Silvia Carloni; Maria Cristina Albertini; Luca Galluzzi; Giuseppe Buonocore; Fabrizio Proietti; Walter Balduini
Conditions that interfere with the endoplasmic reticulum (ER) functions cause accumulation of unfolded proteins in the ER lumen, referred to as ER stress, and activate a homeostatic signaling network known as unfolded protein response (UPR). We have previously shown that in neonatal rats subjected to hypoxia–ischemia (HI), melatonin administration significantly reduces brain damage. This study assessed whether attenuation of ER stress is involved in the neuroprotective effect of melatonin after neonatal HI. We found that the UPR was strongly activated after HI. Melatonin significantly reduced the neuron splicing of XBP‐1 mRNA, the increased phosphorylation of eIF2α, and elevated expression of chaperone proteins GRP78 and Hsp70 observed after HI in the brain. CHOP, which plays a convergent role in the UPR, was reduced as well. Melatonin also completely prevented the depletion of SIRT‐1 induced by HI, and this effect was observed in the same neurons that over‐express CHOP. These results demonstrate that melatonin reduces ER stress induced by neonatal HI and preserves SIRT‐1 expression, suggesting that SIRT‐1, due to its action in the modulation of a wide variety of signaling pathways involved in neuroprotection, may play a key role in the reduction of ER stress and neuroprotection observed after melatonin.
Reproductive Biomedicine Online | 2013
Simone Palini; Luca Galluzzi; S. De Stefani; M. Bianchi; Dagan Wells; Mauro Magnani; Carlo Bulletti
IVF often requires embryo cryopreservation through vitrification. During the vitrification process, the embryos can be collapsed by withdrawing the blastocoele fluid. The metabolomic profile of blastocoele fluid has been recently investigated by high-performance liquid chromatography-electrospray ionization-mass spectrometry to provide metabolite information that can help estimations of implantation efficiency. However, the presence of embryo DNA in blastocoele fluid has not been reported to date. This study shows using real-time PCR that genomic DNA was present in about 90% of blastocoele fluid samples harvested during the vitrification procedure. Moreover, the potential for determining embryo sex directly from blastocoele fluid is demonstrated by amplifying the multicopy genes TSPY1 (on the Y chromosome) and TBC1D3 (on chromosome 17). This opens up the possibility of screening embryos from couples carrying an X-linked disorder to identify male embryos at high risk of disease. The application of whole-genome amplification technologies to fluid samples is also shown to be feasible, potentially allowing more comprehensive genetic tests. As proof of principle, microarray comparative genomic hybridization was attempted to confirm the sex of embryos as well as detect several aneuploidies. However, further studies are needed to validate this approach and confirm that the accuracy is sufficient for diagnostic purposes.
Experimental Neurology | 2014
Silvia Carloni; Maria Cristina Albertini; Luca Galluzzi; Giuseppe Buonocore; Fabrizio Proietti; Walter Balduini
The endoplasmic reticulum (ER) stress can result from several pathological conditions that perturb ER homeostasis and is characterized by accumulation of unfolded proteins in the ER lumen. To cope with ER stress, cells activate the unfolded protein response (UPR), a protein quality control mechanism aimed at restoring homeostasis. The present study was undertaken to characterize the UPR after neonatal hypoxia/ischemia (HI) and its crosstalk with autophagy. After HI, there was a significant increase of GRP78 and Hsp70 expression, phosphorylation of eIF2α, Xbp-1 mRNA splicing and CHOP expression, revealing severe ER stress and UPR. Increasing autophagy with rapamycin (Rap) significantly reduced the UPR. Rap did not further increase the eIF2α phosphorylation and p70S6 kinase (p70S6K) inactivation induced by HI. After autophagy activation, however, there was a clear co-localization between monodansylcadaverine (MDC)-positive autophagosome-like structures and the ribosomal protein S6 (RPS6), indicating the presence of ribosomes in autophagosomes (ribophagy). We found that the autophagy inhibitor 3-methyladenine administered after Rap treatment completely reverted the increased phosphorylation of eIF2α and p70S6K inactivation, and blocked the formation of autophagosome-like structures restoring the UPR. These results demonstrate that the UPR is strongly activated after neonatal HI. Over-activation of autophagy significantly reduces this response, highlighting the relevance of the cross-talk between ER and the autophagy machinery in this important pathological condition. Furthermore, the presence of ribosome subunits in autophagosome-like structures suggests that increased ribosome turnover through autophagy (ribophagy) may represent an additional mechanism involved in the neuroprotective effect observed after autophagy over-activation.
Oncogene | 2012
Luca Galluzzi; Oliver Kepp; Guido Kroemer
Chemo- and radio-therapeutic regimens frequently kill cancer cells by inducing apoptosis, a cell-death subroutine that involves the activation of a particular class of proteases called caspases. In a recent issue of Nature Medicine, Huang et al. (2011) show that caspase activation in dying tumor cells causes the release of soluble lipid messengers, notably prostaglandin E2, that stimulate tumor cell proliferation. In this short review, we will discuss the clinical and therapeutic implications of these findings.
Journal of Microbiological Methods | 2011
Luca Galluzzi; Alessandra Cegna; Silvia Casabianca; Antonella Penna; Nick Saunders; Mauro Magnani
Harmful Algal Blooms (HABs), mainly caused by dinoflagellates and diatoms, have great economic and sanitary implications. An important contribution for the comprehension of HAB phenomena and for the identification of risks related to toxic algal species is given by the monitoring programs. In the microscopy-based monitoring methods, harmful species are distinguished through their morphological characteristics. This can be time consuming and requires great taxonomic expertise due to the existence of morphologically close-related species. The high throughput, automation possibility and specificity of microarray-based detection assay, makes this technology very promising for qualitative detection of HAB species. In this study, an oligonucleotide microarray targeted to the ITS1-5.8S-ITS2 rDNA region of nine toxic dinoflagellate species/clades was designed and evaluated. Two probes (45-47 nucleotides in length) were designed for each species/clade to reduce the potential for false positives. The specificity and sensitivity of the probes were evaluated with ITS1-5.8S-ITS2 PCR amplicons obtained from 20 dinoflagellates cultured strains. Cross hybridization experiments confirmed the probe specificity; moreover, the assay showed a good sensitivity, allowing the detection of up to 2 ng of labeled PCR product. The applicability of the assay with field samples was demonstrated using net concentrated seawater samples, un-spiked or spiked with known amounts of cultured cells. Despite the general application of microarray technology for harmful algae detection is not new, a peculiar group of target species/clades has been included in this new-format assay. Moreover, novelties regarding mainly the probes and the target rDNA region have allowed sensitivity improvements in comparison to previously published studies.