Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Grimaldi is active.

Publication


Featured researches published by Luca Grimaldi.


Medical Physics | 2006

In vivo dosimetry by an aSi‐based EPID

Angelo Piermattei; Andrea Fidanzio; Gerardina Stimato; L. Azario; Luca Grimaldi; Guido D'Onofrio; Savino Cilla; M. Balducci; Maria Antonietta Gambacorta; Nicola Di Napoli; Numa Cellini

A method for the in vivo determination of the isocenter dose, Diso, and mid-plane dose, Dm, using the transmitted signal St measured by 25 central pixels of an aSi-based EPID is here reported. The method has been applied to check the conformal radiotherapy of pelvic tumors and supplies accurate in vivo dosimetry avoiding many of the disadvantages associated with the use of two diode detectors (at the entrance and exit of the patient) as their periodic recalibration and their positioning. Irradiating water-equivalent phantoms of different thicknesses, a set of correlation functions F(w, l) were obtained by the ratio between St and Dm as a function of the phantom thickness, w, for a different field width, l. For the in vivo determination of Diso and Dm values, the water-equivalent thickness of the patients (along the beam central axis) was evaluated by means of the treatment planning system that uses CT scans calibrated in terms of the electron densities. The Diso and Dm values experimentally determined were compared with the stated doses D(iso,TPS) and D(m,TPS), determined by the treatment planning system for ten pelvic treatments. In particular, for each treatment four fields were checked in six fractions. In these conditions the agreement between the in vivo dosimetry and stated doses at the isocenter point were within 3%. Comparing the 480 dose values obtained in this work with those obtained for 30 patients tested with a similar method, which made use of a small ion-chamber positioned on the EPIDs to obtain the transmitted signal, a similar agreement was observed. The method here proposed is very practical and can be applied in every treatment fraction, supplying useful information about eventual patient dose variations due to the incorrect application of the quality assurance program based on the check of patient setup, machine setting, and calculations.


Physics in Medicine and Biology | 2007

Application of a practical method for the isocenter point in vivo dosimetry by a transit signal

Angelo Piermattei; Andrea Fidanzio; L. Azario; Luca Grimaldi; Guido D'Onofrio; Savino Cilla; Gerardina Stimato; Diego Gaudino; Sara Ramella; Rolando Maria D'Angelillo; Francesco Cellini; Lucio Trodella; Aniello Russo; Luciano Iadanza; Sergio Zucca; Vincenzo Fusco; Nicola Di Napoli; Maria Antonietta Gambacorta; M. Balducci; Numa Cellini; F. Deodato; G. Macchia; Alessio G. Morganti

This work reports the results of the application of a practical method to determine the in vivo dose at the isocenter point, D(iso), of brain thorax and pelvic treatments using a transit signal S(t). The use of a stable detector for the measurement of the signal S(t) (obtained by the x-ray beam transmitted through the patient) reduces many of the disadvantages associated with the use of solid-state detectors positioned on the patient as their periodic recalibration, and their positioning is time consuming. The method makes use of a set of correlation functions, obtained by the ratio between S(t) and the mid-plane dose value, D(m), in standard water-equivalent phantoms, both determined along the beam central axis. The in vivo measurement of D(iso) required the determination of the water-equivalent thickness of the patient along the beam central axis by the treatment planning system that uses the electron densities supplied by calibrated Hounsfield numbers of the computed tomography scanner. This way it is, therefore, possible to compare D(iso) with the stated doses, D(iso,TPS), generally used by the treatment planning system for the determination of the monitor units. The method was applied in five Italian centers that used beams of 6 MV, 10 MV, 15 MV x-rays and (60)Co gamma-rays. In particular, in four centers small ion-chambers were positioned below the patient and used for the S(t) measurement. In only one center, the S(t) signals were obtained directly by the central pixels of an EPID (electronic portal imaging device) equipped with commercial software that enabled its use as a stable detector. In the four centers where an ion-chamber was positioned on the EPID, 60 pelvic treatments were followed for two fields, an anterior-posterior or a posterior-anterior irradiation and a lateral-lateral irradiation. Moreover, ten brain tumors were checked for a lateral-lateral irradiation, and five lung tumors carried out with three irradiations with different gantry angles were followed. One center used the EPID as a detector for the S(t) measurement and five pelvic treatments with six fields (many with oblique incidence) were followed. These last results are reported together with those obtained in the same center during a pilot study on ten pelvic treatments carried out by four orthogonal fields. The tolerance/action levels for every radiotherapy fraction were 4% and 5% for the brain (symmetric inhomogeneities) and thorax/pelvic (asymmetric inhomogeneities) irradiations, respectively. This way the variations between the total measured and prescribed doses at the isocenter point in five fractions were well within 2% for the brain treatment, and 4% for thorax/pelvic treatments. Only 4 out of 90 patients needed new replanning, 2 patients of which needed a new CT scan.


Medical Physics | 2009

Integration between in vivo dosimetry and image guided radiotherapy for lung tumors

Angelo Piermattei; Savino Cilla; Luca Grimaldi; Domenico Sabatino; Andrea Fidanzio; Francesca Greco; Alessandra Mameli; M. Balducci; Gian Carlo Mattiucci; V. Frascino; Gerardina Stimato; Diego Gaudino; Sara Ramella; Lucio Trodella; Guido D'Onofrio; Giampaolo Zini; G. Macchia; C. Digesù; Alessio G. Morganti; Stefania Clemente; Mariella Cozzolino; Piernicola Pedicini; Vincenzo Fusco

The article reports a feasibility study about the potentiality of an in vivo dosimetry method for the adaptive radiotherapy of the lung tumors treated by 3D conformal radiotherapy techniques (3D CRTs). At the moment image guided radiotherapy (IGRT) has been used for this aim, but it requires taking many periodic radiological images during the treatment that increase workload and patient dose. In vivo dosimetry reported here can reduce the above efforts, alerting the medical staff for the commissioning of new radiological images for an eventual adaptive plan. The in vivo dosimetry method applied on 20 patients makes use of the transit signal St on the beam central axis measured by a small ion chamber positioned on an electronic portal imaging device (EPID) or by the EPID itself. The reconstructed in vivo dosimetry at the isocenter point Diso requires a convolution between the transit signal St and a dose reconstruction factor C that essentially depends on (i) tissue inhomogeneities along the beam central axis and (ii) the in-patient isocenter depth. The C factors, one for every gantry angle, are obtained by processing the patients computed tomography scan. The method has been recently applied in some Italian centers to check the radiotherapy of pelvis, breast, head, and thorax treatments. In this work the dose reconstruction was carried out in five centers to check the Diso in the lung tumor during the 3D CRT, and the results have been used to detect the interfraction tumor anatomy variations that can require new CT imaging and an adaptive plan. In particular, in three centers a small ion chamber was positioned below the patient and used for the St measurement. In two centers, the St signal was obtained directly by 25 central pixels of an a-Si EPID, equipped with commercial software that enabled its use as a stable detector. A tolerance action level of +/- 6% for every checked beam was assumed. This means that when a difference greater than 6% between the predicted dose by the treatment planning system, Diso,TPS, and the Diso was observed, the clinical action started to detect possible errors. 60% of the patients examined presented morphological changes during the treatment that were checked by the in vivo dosimetry and successively confirmed by the new CT scans. In this work, a patient that showed for all beams Diso values outside the tolerance level, new CT scans were commissioned for an adaptive plan. The lung dose volume histograms (DVHs) for a Diso,TPs=2 Gy for fraction suggested the adaptive plan to reduce the dose in lung tissue. The results of this research show that the dose guided radiotherapy (DGRT) by the Diso reconstruction was feasible for daily or periodic investigation on morphological lung tumor changes. In other words, since during 3D CRT treatments the anatomical lung tumor changes occur frequently, the DGRT can be well integrated with the IGRT.


Physica Medica | 2005

In Vivo Portal Dosimetry by an Ionization Chamber

Angelo Piermattei; Luca Grimaldi; Guido D'Onofrio; Savino Cilla; P. Viola; M. Craus; Andrea Fidanzio; L. Azario; F. Deodato; G. Macchia; A.G. Morganti

As all methods for in-vivo dosimetry require special efforts many physicists are often discouraged in verifying the middle dose in a patient along the beam central axis. This work reports a practical method for the determination of the middle dose value, D(m), on the central beam axis, using a signal S(t), obtained by a small thimble ion-chamber positioned at the center of the electronic portal imaging device, and irradiated by the X-ray beam transmitted through the patient. The use of a stable ion-chamber reduces many of the disadvantages associated to the use of diodes as their periodic recalibration and time consuming positioning. The method makes use of a set of correlation functions obtained by the S(t) and D(m) ratios, determined by irradiating a water-equivalent phantom with 6 MV, 10 MV and 5 MV X-ray beams. Several tests were carried out in phantoms with asymmetric inhomogeneities. The method here proposed is based on the determination of the water-equivalent thickness of the patient, along the beam central axis, by the treatment planning system that makes use of the electron densities obtained by a computer tomography scanner, that works with calibrated Hounsfield numbers. This way, it is therefore possible to compare the dose, D(m, TPS), obtained by a treatment planning system, with the in-vivo dose D(m) value, both defined at density middle point (identified along the beam central axis, where the thick material, in terms of g cm(-2), above and below, is the same). The method has been applied for the in-vivo dosimetry of 30 patients, treated with conformed beams for pelvic tumor, checking: anterior-posterior or posterior-anterior irradiations and lateral-lateral irradiations. For every checked field at least five measurements were carried out. Applying a correct quality assurance program based on the tests of the patient set-up, machine settings and calculations, results showed that the method is able to verify agreements between the dose D(m,TPS) and the in-vivo dose value D(m), within 4% for 95% of the 240 measurements carried out in-vivo.


Journal of Applied Clinical Medical Physics | 2006

Comparison of measured and computed portal dose for IMRT treatment.

Savino Cilla; P. Viola; L. Azario; Luca Grimaldi; M. Craus; Guido D'Onofrio; Andrea Fidanzio; A.G. Morganti; Angelo Piermattei

A new 2D array Seven 29™ model (PTW, Freiburg), equipped with 729 vented plane‐parallel ion chambers, projected for pretreatment verification of radiotherapy plans, was used as a detector for the transmitted or portal dose measurements below a Rando phantom. The dosimetric qualities of the 2D array make it attractive for measuring transmitted dose maps from step‐and‐shoot intensity‐modulated radiotherapy (IMRT). It is well known that for step‐and‐shoot IMRT beams that use a small number of monitor units (MUs) per sequence, the early and recent electronic portal imaging devices (EPIDs) present a different response at X‐ray start‐up that affects the accuracy of the measured transmitted dose. The comparison of portal doses measured to those calculated by a commercial treatment‐planning system (TPS) can verify correct dose delivery during treatment. This direct validation was tested by irradiating a simulated head tumor in a Rando anthropomorphic phantom by step‐and‐shoot IMRT beams. The absolute transmitted doses on a plane orthogonal to the beam central axis below the phantom were measured by the 2D array calibrated in terms of dose to water and compared with the computed portal dose extracted by custom software. In a previous paper, the comparison between the IMRT portal doses, computed by a commercial TPS and measured by a linear array that supplied a 1 mm spatial dose resolution, was carried out. The γ‐index analysis supplied an agreement of more than 95% of the dose point with acceptance criteria, in terms of dose difference, ΔDmax, and distance agreement, Δdmax, equal to 4% and 4 mm, respectively. In this paper, we verify the possible use of the PTW 2D array for measurements of the transmitted doses during several fractions of head and neck tumor radiotherapy. There are two advantages in the use of this 2D array as a portal dose device for the IMRT quality assurance program: first is the ability to perform absolute dose comparisons for hundreds of measurement positions to verify the correct dose delivery in several fractions of the therapy; second is the efficiency in time to detect these kinds of dose distributions within the field of view area of the CT scanner. PACS number: 87.53.Xd


Acta Oncologica | 2008

Real time transit dosimetry for the breath-hold radiotherapy technique: An initial experience

Angelo Piermattei; Savino Cilla; Luca Grimaldi; P. Viola; Lorenzo Frattarolo; Guido D'Onofrio; M. Craus; Andrea Fidanzio; L. Azario; Francesca Greco; C. Digesù; F. Deodato; G. Macchia; Alessio G. Morganti

Introduction. The breath-hold is one of the techniques to obtain the dose escalation for lung tumors. However, the change of the patients breath pattern can influence the stability of the inhaled air volume, IAV, used in this work as a surrogate parameter to assure the tumor position reproducibility during dose delivery.Materials. and methodIn this paper, an Elekta active breathing coordinator has been used for lung tumor irradiation. This device is not an absolute spirometer and the feasibility study here presented developed (i) the possibility to select a specific range ε of IAV values comfortable for the patient and (ii) the ability of a transit signal rate , obtained by a small ion-chamber positioned on the portal image device, to supply in real time the in vivo isocenter dose reproducibility. Indeed, while the selection of the IAV range depends on the patients ability to follow instructions for breath-hold, the monitoring can supply to the radiation therapist a surrogate of the tumor irradiation reproducibility.Results. The detection of the in real time during breath-hold was used to determine the interfraction isocenter dose variations due to the reproducibility of the patients breathing pattern. The agreement between the reconstructed and planned isocenter dose in breath-hold at the interfraction level was well within 1.5%, while in free breathing a disagreement up to 8% was observed. The standard deviation of the in breath-hold observed at the intrafraction level is a bit higher than the one obtained without the patient and this can be justified by the presence of a small residual tumor motion as heartbeat.Conclusion. The technique is simple and can be implemented for routine use in a busy clinic.


Medical Physics | 2008

DYNAMIC CONFORMAL ARC THERAPY: TRANSMITTED SIGNAL IN-VIVO DOSIMETRY

Angelo Piermattei; Gerardina Stimato; Diego Gaudino; Sara Ramella; Rolando Maria D'Angelillo; Francesco Cellini; Lucio Trodella; Guido D'Onofrio; Luca Grimaldi; Savino Cilla; Andrea Fidanzio; Elisa Placidi; L. Azario

A method for the determination of the in vivo isocenter dose, D(iso), has been applied to the dynamic conformal are therapy (DCAT) for thoracic tumors. The method makes use of the transmitted signal, S(t,alpha), measured at different gantry angles, a, by a small ion chamber positioned on the electronic portal imaging device. The in vivo method is implemented by a set of correlation functions obtained by the ratios between the transmitted signal and the midplane dose in a solid phantom, irradiated by static fields. The in vivo dosimetry at the isocenter for the DCAT requires the convolution between the signals, S(t,alpha), and the dose reconstruction factors, C(alpha), that depend on the patients anatomy and on its tissue inhomogeneities along the beam central axis in the a direction. The C(alpha) factors are obtained by processing the patients computed tomography scan. The method was tested by taking measurements in a cylindrical phantom and in a Rando Alderson phantom. The results show that the difference between the convolution calculations and the phantom measurements is within +/-2%. The in vivo dosimetry of the stereotactic DCAT for six lung tumors, irradiated with three or four arcs, is reported. The isocenter dose up to 17 Gy per therapy fraction was delivered on alternating days for three fractions. The agreement obtained in this pilot study between the total in vivo dose D(iso) and the planned dose D(iso,TPS) at the isocenter is +/-4%. The method has been applied on the DCAT obtaining a more extensive monitoring of possible systematic errors, the effect of which can invalidate the current therapy which uses a few high-dose fractions.


Medical Physics | 2007

Breast in vivo dosimetry by a portal ionization chamber

Luca Grimaldi; Guido D'Onofrio; Savino Cilla; Andrea Fidanzio; Gerardina Stimato; L. Azario; F. Deodato; G. Macchia; Alessio G. Morganti; Angelo Piermattei

This work reports a practical method for the determination of the in vivo breast middle dose value, D(m) on the beam central axis, using a signal S(t), obtained by a small thimble ion chamber positioned at the center of the electronic portal imaging device, and irradiated by the x-ray beam transmitted through the patient. The use of a stable ion chamber reduces many of the disadvantages associated with the use of diodes as their periodic recalibration and positioning is time consuming. The method makes use of a set of correlation functions obtained by the ratios S(t)/D(m), determined by irradiating cylindrical water phantoms with different diameters. The method proposed here is based on the determination of the water-equivalent thickness of the patient, along the beam central axis, by the treatment planning system that makes use of the electron densities obtained by a computed tomography scanner. The method has been applied for the breast in vivo dosimetry of ten patients treated with a manual intensity modulation with four asymmetric beams. In particular, two tangential rectangular fields were first delivered, thereafter a fraction of the dose (typically less than 10%) was delivered with two multi leaf-shaped beams which included only the mammarian tissue. Only the two rectangular fields were tested and for every checked field five measurements were carried out. Applying a continuous quality assurance program based on the tests of patient setup, machine settings and dose planning, the proposed method is able to verify agreements between the computed dose D(m,TPS) and the in vivo dose value D(m), within 4%.


Physics in Medicine and Biology | 2003

Experimental dosimetry of a 32P catheter-based endovascular brachytherapy source.

Angelo Piermattei; Andrea Fidanzio; F Perrone; L. Azario; Luca Grimaldi; P. Viola; Roberto Capote

The experimental dosimetry in a water phantom of a 32P linear source, 20 mm in length, used for the brachytherapy of coronary vessels is reported. The source content activity, A, was determined by means of a calibrated well ion-chamber and the value was compared with the contained activity reported in the manufacturers certification. In this field of brachytherapy dosimetry, radiochromic film supplies a high enough spatial resolution. A highly sensitive radiochromic film, that presents only one active layer, was used in this work for the source dosimetry in a water phantom. The radiochromic film was characterized by electron beams produced by a clinical linac. A Monte Carlo calculation of beta spectra in water at different distances along the source transverse bisector axis allowed to take into account the low dependence of film response from the electron beam energy. The adopted experimental set-up, with the source in its catheter positioned on the film plane inside the water phantom, supplies accurate dosimetric information. The measured dose rate to water per unit of source activity at reference distance, D(r0, theta0)/A, in units of cGy s(-1) GBq(-1), was in agreement with the value reported in the manufacturers certification within the experimental uncertainty. The radial dose function, g(r), is in good agreement with the literature data. The anisotropy function F(r, theta) is also reported. The analysis of the dose profile obtained at 2 mm from the source longitudinal axis shows that the uniformity is within 10% along 75% of the 20 mm treatment length. The adopted experimental set-up seems to be adequate for the quality control procedure of the dose homogeneity distribution in the water medium.


Tumori | 2007

LARGE DISCREPANCIES BETWEEN PLANNED AND ACTUALLY DELIVERED DOSE IN IMRT OF HEAD AND NECK CANCER. A CASE REPORT

Angelo Piermattei; Savino Cilla; Guido D'Onofrio; Luca Grimaldi; C. Digesù; G. Macchia; F. Deodato; Alessio G. Morganti

The case is reported of a patient with locally recurrent carcinoma of the tongue treated with intensity-modulated radiotherapy (IMRT) (simultaneous integrated boost) plus concurrent chemotherapy, who during the third week of radiotherapy developed grade 3 mucositis. Treatment was interrupted for 10 days until significant resolution of the symptoms. At the time of treatment resumption the patient showed 8% weight loss, and in vivo portal dose verification revealed large discrepancies between the computed and measured doses. A new CT scan showed marked tumor shrinkage and modifications to the critical structures. The comparison between the original plan and the hybrid IMRT showed a minimal dose increase in the new target volumes and a marked dose increase in the organs at risk. This case confirms the need for a robust quality assurance program when using IMRT, the feasibility and efficacy of in vivo dosimetry to detect significant discrepancies between planned and delivered dose, and the need to combine IMRT with 4-dimensional radiotherapy, at least for head and neck cancer.

Collaboration


Dive into the Luca Grimaldi's collaboration.

Top Co-Authors

Avatar

Savino Cilla

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Andrea Fidanzio

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Angelo Piermattei

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

L. Azario

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Guido D'Onofrio

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

G. Macchia

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

F. Deodato

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Gerardina Stimato

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

P. Viola

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Francesca Greco

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge