Luca Grumolato
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luca Grumolato.
Genes & Development | 2010
Luca Grumolato; Guizhong Liu; Phyllus Mong; Raksha Mudbhary; Romi Biswas; Randy Arroyave; Sapna Vijayakumar; Aris N. Economides; Stuart A. Aaronson
Wnt ligands signal through β-catenin and are critically involved in cell fate determination and stem/progenitor self-renewal. Wnts also signal through β-catenin-independent or noncanonical pathways that regulate crucial events during embryonic development. The mechanism of noncanonical receptor activation and how Wnts trigger canonical as opposed to noncanonical signaling have yet to be elucidated. We demonstrate here that prototype canonical Wnt3a and noncanonical Wnt5a ligands specifically trigger completely unrelated endogenous coreceptors-LRP5/6 and Ror1/2, respectively-through a common mechanism that involves their Wnt-dependent coupling to the Frizzled (Fzd) coreceptor and recruitment of shared components, including dishevelled (Dvl), axin, and glycogen synthase kinase 3 (GSK3). We identify Ror2 Ser 864 as a critical residue phosphorylated by GSK3 and required for noncanonical receptor activation by Wnt5a, analogous to the priming phosphorylation of low-density receptor-related protein 6 (LRP6) in response to Wnt3a. Furthermore, this mechanism is independent of Ror2 receptor Tyr kinase functions. Consistent with this model of Wnt receptor activation, we provide evidence that canonical and noncanonical Wnts exert reciprocal pathway inhibition at the cell surface by competition for Fzd binding. Thus, different Wnts, through their specific coupling and phosphorylation of unrelated coreceptors, activate completely distinct signaling pathways.
Cancer Cell | 2011
Sapna Vijayakumar; Guizhong Liu; Ioana A. Rus; Shen Yao; Yan Chen; Gal Akiri; Luca Grumolato; Stuart A. Aaronson
Wnt canonical signaling is critical for normal development as well as homeostasis of several epithelial tissues, and constitutive activation of this pathway is commonly observed in carcinomas. We show here that 50% of human sarcomas (n = 45) and 65% of sarcoma cell lines (n = 23) of diverse histological subtypes exhibit upregulated autocrine canonical Wnt signaling. Furthermore, in Wnt autocrine cell lines, we identify alterations including overexpression or gene amplification of Wnt ligands and/or LRP5/6 coreceptors and epigenetic silencing of different cell surface Wnt antagonists. Mutations in adenomatous polyposis coli (APC) gene were observed in two nonautocrine Wnt-positive sarcoma cell lines. Finally, downregulation of the activated Wnt pathway inhibited sarcoma cell proliferation both in vitro and in vivo by a mechanism involving the downregulation of CDC25A.
Endocrinology | 2002
David Alexandre; Hubert Vaudry; Luca Grumolato; Valérie Turquier; Alain Fournier; Sylvie Jégou; Youssef Anouar
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts its various effects through activation of two types of G protein-coupled receptors, a receptor with high affinity for PACAP named PAC1-R and two receptors exhibiting similar affinity for both PACAP and vasoactive intestinal polypeptide named VPAC1-R and VPAC2-R. Here, we report the characterization of PAC1-R and novel splice variants in the frog Rana ridibunda. The frog PAC1-R has 78% homology with human PAC1-R and is highly expressed in the central nervous system. Two splice variants of the frog receptor that display additional amino acid cassettes in the third intracellular loop were characterized. PAC1-R25 carries a 25-amino acid insertion that matches the hop cassette of the mammalian receptor, whereas PAC1-R41 carries a cassette with no homology to any mammalian PAC1-R variant. A third splice variant of PAC1-R, exhibiting a completely different intracellular C-terminal domain, named PAC1-Rmc has also been identified. Determination of c...
PLOS Genetics | 2013
Luca Grumolato; Guizhong Liu; Tomomi Haremaki; Sathish Kumar Mungamuri; Phyllus Mong; Gal Akiri; Pablo Lopez-Bergami; Adriana Arita; Youssef Anouar; Marek Mlodzik; Ze'ev Ronai; Joshua Brody; Daniel C. Weinstein; Stuart A. Aaronson
The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling.
Genes & Development | 2010
Jaskirat Singh; Wang A. Yanfeng; Luca Grumolato; Stuart A. Aaronson; Marek Mlodzik
Abelson (Abl) family tyrosine kinases have been implicated in cell morphogenesis, adhesion, motility, and oncogenesis. Using a candidate approach for genes involved in planar cell polarity (PCP) signaling, we identified Drosophila Abl (dAbl) as a modulator of Frizzled(Fz)/PCP signaling. We demonstrate that dAbl positively regulates the Fz/Dishevelled (Dsh) PCP pathway without affecting canonical Wnt/Wg-Fz signaling. Genetic dissection suggests that Abl functions via Fz/Dsh signaling in photoreceptor R3 specification, a well-established Fz-PCP signaling readout. Molecular analysis shows that dAbl binds and phosphorylates Dsh on Tyr473 within the DEP domain. This phosphorylation event on Dsh is functionally critical, as the equivalent DshY473F mutant is nonfunctional in PCP signaling and stable membrane association, although it rescues canonical Wnt signaling. Strikingly, mouse embryonic fibroblasts (MEFs) deficient for Abl1 and Abl2/Arg genes also show reduced Dvl2 phosphorylation as compared with control MEFs, and this correlates with a change in subcellular localization of endogenous Dvl2. As in Drosophila, such Abl-deficient MEFs show no change in canonical Wnt signaling. Taken together, our results argue for a conserved role of Abl family members in the positive regulation of Dsh activity toward Fz-Dsh/PCP signaling by Dsh phosphorylation.
EMBO Reports | 2013
Ekatherina Serysheva; Hebist Berhane; Luca Grumolato; Kubilay Demir; Sophie Balmer; Maxime Bodak; Michael Boutros; Stuart A. Aaronson; Marek Mlodzik; Andreas Jenny
Wnt/β‐catenin signalling is central to development and its regulation is essential in preventing cancer. Using phosphorylation of Dishevelled as readout of pathway activation, we identified Drosophila Wnk kinase as a new regulator of canonical Wnt/β‐catenin signalling. WNK kinases are known for regulating ion co‐transporters associated with hypertension disorders. We demonstrate that wnk loss‐of‐function phenotypes resemble canonical Wnt pathway mutants, while Wnk overexpression causes gain‐of‐function canonical Wnt‐signalling phenotypes. Importantly, knockdown of human WNK1 and WNK2 also results in decreased Wnt signalling in mammalian cell culture, suggesting that Wnk kinases have a conserved function in ensuring peak levels of canonical Wnt signalling.
Cell Reports | 2013
Sathish Kumar Mungamuri; William Murk; Luca Grumolato; Emily Bernstein; Stuart A. Aaronson
ErbB2 gene amplification occurs in 20%-25% of breast cancers, and its therapeutic targeting has markedly improved survival of patients with breast cancer in the adjuvant setting. However, resistance to these therapies can develop. Because epigenetic mechanisms can importantly influence oncogene expression and be druggable as well, we investigated histone modifications that influence ErbB2 overexpression, independent of gene amplification. We demonstrate here that ErbB2-overexpressing breast carcinomas acquire the H3K4me3 mark on the erbB2 promoter and that receptor-amplified tumors further acquire the H3K9ac mark, which is dependent on H3K4me3 mark acquisition. Targeting WD repeat domain 5 (Wdr5), which is absolutely required for H3K4me3 enrichment, decreased ErbB2 overexpression, associated with a decrease in the H3K4me3 mark on the erbB2 promoter. Of note, Wdr5 silencing cooperated with trastuzumab or chemotherapy in specifically inhibiting the growth of ErbB2-positive breast tumor cells. Thus, our studies illuminate epigenetic steps in the selection for ErbB2 activation.
Methods | 2017
Alexis Guernet; Luca Grumolato
The CRISPR/Cas9 revolution has democratized access to genome editing in many biological fields, including cancer research. Cancer results from the multistep accumulation of mutations that confer to the transformed cells certain biological hallmarks typical of the malignant phenotype. One of the major goals in cancer research is to characterize such mutations and assess their implication in the oncogenic process. Through CRISPR/Cas9 technology, genetic aberrations identified in a patients tumor can now be easily recreated in experimental models, which can then be used for basic research or for more translational applications. Here we review the different CRISPR/Cas9 strategies that have been implemented to recapitulate oncogenic mutations in both in vitro and in vivo systems, including novel strategies to model tumor evolution and genetic heterogeneity.
Oncogene | 2011
Stefania Asciutti; Gal Akiri; Luca Grumolato; Sapna Vijayakumar; Stuart A. Aaronson
Human gastric carcinomas are among the most treatment-refractory epithelial malignancies. Increased understanding of the underlying molecular aberrations in such tumors could provide insights leading to improved therapeutic approaches. In this study, we characterized diverse genetic aberrations leading to constitutive Wnt signaling activation in a series of human gastric carcinoma cell lines. Downregulation of TCF signaling by stable transduction of dominant negative TCF4 (DNTCF4) resulted in inhibition of proliferation in Wnt-activated AGS tumor cells. c-Myc downregulation and the associated upregulation of its repression target, p21 observed in these tumor cells, as well as the profound growth inhibition induced by c-Myc small hairpin RNA (shRNA) implied their c-Myc addiction. In striking contrast, Wnt-activated MKN-28 and MKN-74 tumor cells appeared refractory to DNTCF4 inhibition of proliferation despite comparably decreased c-Myc expression levels. The resistance of these same tumor cells to growth inhibition by c-Myc shRNA established that their refractoriness to DNTCF was because of their independence from c-Myc for proliferation. There was no correlation between this resistance phenotype and the presence or absence of constitutive mitogen-activated protein kinase (MAPK) and/or AKT pathway activation, commonly observed in gastrointestinal tumors. However, in both DNTCF-sensitive and -resistant tumor cells with MAPK and/or AKT pathway activation, the ability of small molecule antagonists directed against either pathway to inhibit tumor cell growth was enhanced by Wnt pathway inhibition. These findings support the concept that although certain Wnt-activated tumors may escape c-Myc dependence for proliferation, disruption of other oncogenic pathways can unmask cooperative antiproliferative effects for Wnt pathway downregulation.
EMBO Reports | 2017
Abdallah Hamieh; Dorthe Cartier; Houssni Abid; A. Calas; Carole Burel; Christine Bucharles; Cedric Jehan; Luca Grumolato; Marc Landry; Patrice Lerouge; Youssef Anouar; Isabelle Lihrmann
Selenoprotein T (SelT) is a recently characterized thioredoxin‐like protein whose expression is very high during development, but is confined to endocrine tissues in adulthood where its function is unknown. We report here that SelT is required for adaptation to the stressful conditions of high hormone level production in endocrine cells. Using immunofluorescence and TEM immunogold approaches, we find that SelT is expressed at the endoplasmic reticulum membrane in all hormone‐producing pituitary cell types. SelT knockdown in corticotrope cells promotes unfolded protein response (UPR) and ER stress and lowers endoplasmic reticulum‐associated protein degradation (ERAD) and hormone production. Using a screen in yeast for SelT‐membrane protein interactions, we sort keratinocyte‐associated protein 2 (KCP2), a subunit of the protein complex oligosaccharyltransferase (OST). In fact, SelT interacts not only with KCP2 but also with other subunits of the A‐type OST complex which are depleted after SelT knockdown leading to POMC N‐glycosylation defects. This study identifies SelT as a novel subunit of the A‐type OST complex, indispensable for its integrity and for ER homeostasis, and exerting a pivotal adaptive function that allows endocrine cells to properly achieve the maturation and secretion of hormones.