Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Lorenzini is active.

Publication


Featured researches published by Luca Lorenzini.


Journal of Alzheimer's Disease | 2011

The γ-secretase modulator CHF5074 restores memory and hippocampal synaptic plasticity in plaque-free Tg2576 mice.

Claudia Balducci; Bisan Mehdawy; Lydia Mare; Alessandro Giuliani; Luca Lorenzini; Sandra Sivilia; Luciana Giardino; Laura Calzà; Annamaria Lanzillotta; Ilenia Sarnico; Marina Pizzi; Alessandro Usiello; Arturo Roberto Viscomi; Simone Ottonello; Gino Villetti; Bruno P. Imbimbo; Giuseppe Nisticò; Gianluigi Forloni; Robert Nisticò

Abnormal amyloid-β (Aβ) production and deposition is believed to represent one of the main causes of Alzheimers disease (AD). γ-Secretase is the enzymatic complex responsible for Aβ generation from its precursor protein. Inhibition or modulation of γ-secretase represents an attractive therapeutic approach. CHF5074 is a new γ-secretase modulator that has been shown to inhibit brain plaque deposition and to attenuate memory deficit in adult AD transgenic mice after chronic treatment. To date, it is not known whether the positive behavioral effects of this compound also occur in young transgenic mice without plaque deposition. Here, we evaluated the effects of acute and subchronic treatment with CHF5074 on contextual and recognition memory and on hippocampal synaptic plasticity in plaque-free Tg2576 mice. We found that at 5 months of age, contextual memory impairment was significantly attenuated after acute subcutaneous administration of 30 mg/kg CHF5074. At 6 months of age, recognition memory impairment was fully reversed after a 4-week oral treatment in the diet (≈60 mg/kg/day). These cognitive effects were associated with a reversal of long-term potentiation (LTP) impairment in the hippocampus. A significant reduction in brain intraneuronal AβPP/Aβ levels and hyperphosphorylated tau, but no change in soluble or oligomeric Aβ levels was detected in Tg2576 mice showing functional recovery following CHF5074 treatment. We conclude that the beneficial effects of CHF5074 treatment in young transgenic mice occurred at a stage that precedes plaque formation and were associated with a reduction in intraneuronal AβPP/Aβ and hyperphosphorylated tau.


BMC Complementary and Alternative Medicine | 2009

Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress

Alessandro Giuliani; Luca Lorenzini; Michele Gallamini; Alessandro Massella; Luciana Giardino; Laura Calzà

BackgroundConsiderable interest has been aroused in recent years by the well-known notion that biological systems are sensitive to visible light. With clinical applications of visible radiation in the far-red to near-infrared region of the spectrum in mind, we explored the effect of coherent red light irradiation with extremely low energy transfer on a neural cell line derived from rat pheochromocytoma. We focused on the effect of pulsed light laser irradiation vis-à-vis two distinct biological effects: neurite elongation under NGF stimulus on laminin-collagen substrate and cell viability during oxidative stress.MethodsWe used a 670 nm laser, with extremely low peak power output (3 mW/cm2) and at an extremely low dose (0.45 mJ/cm2). Neurite elongation was measured over three days in culture. The effect of coherent red light irradiation on cell reaction to oxidative stress was evaluated through live-recording of mitochondria membrane potential (MMP) using JC1 vital dye and laser-confocal microscopy, in the absence (photo bleaching) and in the presence (oxidative stress) of H2O2, and by means of the MTT cell viability assay.ResultsWe found that laser irradiation stimulates NGF-induced neurite elongation on a laminin-collagen coated substrate and protects PC12 cells against oxidative stress.ConclusionThese data suggest that red light radiation protects the viability of cell culture in case of oxidative stress, as indicated by MMP measurement and MTT assay. It also stimulates neurite outgrowth, and this effect could also have positive implications for axonal protection.


Antiviral Research | 2011

Brain distribution of ribavirin after intranasal administration

Gaia Colombo; Luca Lorenzini; Elisa Zironi; Viola Galligioni; Fabio Sonvico; Anna Giulia Balducci; Giampiero Pagliuca; Alessandro Giuliani; Laura Calzà; Alessandra Scagliarini

Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood-brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4 h across the mucosa, after reaching steady-state flux in less than 30 min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10 mg/kg). Animals were sacrificed at 10, 20 or 30 min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC-MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10 mg/kg). It was found that 20 min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.


Research in Veterinary Science | 2010

Laser acupuncture for acute inflammatory, visceral and neuropathic pain relief: An experimental study in the laboratory rat.

Luca Lorenzini; Alessandro Giuliani; Luciana Giardino; Laura Calzà

Laser acupuncture is defined as the stimulation of traditional acupuncture points with low-intensity, non-thermal laser irradiation. We explored the clinical efficacy of a very low level diode laser wavelength 670 nm (Biolite LP020, RGM, Genoa, Italy), used to stimulate acupoints ST36 Zu San Li and TH5 Waiguan, on well-established experimental models of acute and persistent pain in the rat, e.g. acute inflammatory pain, muscle pain, visceral pain and neuropathic pain. We report the anti-edema and anti-hyperalgesia effects of laser acupuncture in models of acute inflammatory pain, e.g. CFA-induced inflammation and myofascial pain. We also indicate that spontaneous pain and thermal hyperalgesia are reduced in a neuropathic pain model, e.g. axotomy. On the contrary, no effects due to laser-acupuncture were observed on discomfort indices in a model of visceral pain, e.g. cystitis due to cyclophosphamide. We thus provide evidences that acupoints stimulation using a very low intensity laser irradiation can control pain and edema in specific experimental conditions.


BMC Neuroscience | 2012

Gender effect on neurodegeneration and myelin markers in an animal model for multiple sclerosis

Alessandro Massella; Giulia D'Intino; Mercedes Fernandez; Sandra Sivilia; Luca Lorenzini; Silvia Giatti; Roberto Cosimo Melcangi; Laura Calzà; Luciana Giardino

BackgroundMultiple sclerosis (MS) varies considerably in its incidence and progression in females and males. In spite of clinical evidence, relatively few studies have explored molecular mechanisms possibly involved in gender-related differences. The present study describes possible cellular- and molecular-involved markers which are differentially regulated in male and female rats and result in gender-dependent EAE evolution and progression. Attention was focused on markers of myelination (MBP and PDGFαR) and neuronal distress and/or damage (GABA synthesis enzymes, GAD65 and GAD67, NGF, BDNF and related receptors), in two CNS areas, i.e. spinal cord and cerebellum, which are respectively severely and mildly affected by inflammation and demyelination. Tissues were sampled during acute, relapse/remission and chronic phases and results were analysed by two-way ANOVA.Results1. A strong gender-dependent difference in myelin (MBP) and myelin precursor (PDGFαR) marker mRNA expression levels is observed in control animals in the spinal cord, but not in the cerebellum. This is the only gender-dependent difference in the expression level of the indicated markers in healthy animals; 2. both PDGFαR and MBP mRNAs in the spinal cord and MBP in the cerebellum are down-regulated during EAE in gender-dependent manner; 3. in the cerebellum, the expression profile of neuron-associated markers (GAD65, GAD67) is characterized by a substantial down-regulation during the inflammatory phase of the disease, which does not differ between male and female rats (two-way ANOVA); 4. there is an up-regulation of NGF, trkA and p75 mRNA expression in the early phases of the disease (14 and 21 days post-immunization), which is not different between male and female.ConclusionsIt is reported herein that the regulation of markers involved in demyelination and neuroprotection processes occurring during EAE, a well-established MS animal model, is gender- and time-dependent. These findings might contribute to gender- and phase disease-based therapy strategies.


Photomedicine and Laser Surgery | 2012

Comparative Evaluation of the Effects of Different Photoablative Laser Irradiation Protocols on the Gingiva of Periodontopathic Patients

Marco Giannelli; Daniele Bani; Carlo Viti; Alessia Tani; Luca Lorenzini; Sandra Zecchi-Orlandini; Lucia Formigli

OBJECTIVE We aimed at quantifying the presence of periodontopathogens in gingival biopsies from periodontitis patients treated with different photoablative lasers (diode GaAs, Er:YAG, Nd:YAG, and CO(2) lasers) and histologically analyzing their effects on the gingiva. BACKGROUND DATA Substantial evidence indicates that intracellular location of periodontal bacteria in the gingival epithelium may contribute to chronic periodontitis. METHODS Sixteen adult subjects with chronic periodontitis were subjected to conventional scaling/root planing and topical chlorhexidine, and immediately laser-irradiated on the inner and outer free gingiva. Small gingival biopsies were subjected to real-time polymerase chain reaction and cytofluorescence to identify periodontopathogens; tissue damage and endothelial ICAM-1 expression were assessed by histological and immunofluorescence analyses. RESULTS High DNA levels of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Treponema denticola, Prevotella intermedia, and Ekenella corrodens, were detected in all samples. Nd:YAG and diode lasers were capable of eradicating periodontopathogenic bacteria endowed within gingival epithelial cells outside periodontal pockets, without causing connective tissue damage and microvessel rupture. They also reduced ICAM-1 immunolabelling by the vascular endothelium. Conversely, Er:YAG lasers induced marked microvessel rupture and bleeding and failed to completely and selectively ablate the infected gingival epithelium, whereas CO(2) laser caused heat-induced coagulation of the lamina propria. CONCLUSIONS This study indicates that periodontopathogens can persist within cells outside the pocket epithelium, despite conventional periodontal treatment. Nd:YAG and diode lasers are able to eradicate intra- and extracellular bacteria from these sites, suggesting that they can be considered suitable devices to improve the clinical outcome of periodontal disease.


Neuroscience | 2015

CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid

Vanessa Porrini; Annamaria Lanzillotta; Caterina Branca; Marina Benarese; Edoardo Parrella; Luca Lorenzini; Laura Calzà; R. Flaibani; PierFranco Spano; Bruno P. Imbimbo; Marina Pizzi

Activation of microglia associated with neuroinflammation and loss of phagocytic activity is considered to play a prominent role in the pathogenesis of Alzheimers disease (AD). CHF5074 (CSP-1103) has been shown to improve cognition and reduce brain inflammation in patients with mild cognitive impairment (MCI). CHF5074 was also found to reverse impairments in recognition memory and improve hippocampal long-term potentiation when administered to plaque-free Tg2576 mice (5-month-old) for 4 weeks. Though, no investigation has focused on the consequence of CHF5074 treatment on microglia polarization yet. In this study we evaluated the effect of CHF5074 administration (375 ppm in the diet) to 5-month-old Tg2576 mice on the expression of pro-inflammatory (M1) genes, Interleukin 1 beta (IL-1β), Tumor Necrosis Factor alpha (TNFα) and inducible Nitric Oxide Synthase (iNOS), and anti-inflammatory/phagocytic (M2) markers Mannose Receptor type C 1 (MRC1/CD206), Triggering Receptor Expressed on Myeloid cells 2 (TREM2) and Chitinase 3-like 3 (Ym1). No changes of pro-inflammatory gene transcription but a reduced expression of MRC1/CD206, TREM2 and Ym1 were detected in the hippocampus of young Tg2576 mice receiving normal diet, when compared to wild-type littermates. CHF5074 did not affect the pro-inflammatory transcription but significantly increased the expression of MRC1/CD206 and Ym1. CHF5074 effects appeared to be hippocampus-specific, as the M2 transcripts were only slightly modified in the cerebral cortex. In primary cultures of mouse astrocyte-microglia, CHF5074 totally suppressed the expression of TNF-α, IL-1β and iNOS induced by 10 μM β-amyloid1-42 (Aβ42). Moreover, CHF5074 significantly increased the expression of anti-inflammatory/phagocytic markers MRC1/CD206 and TREM2, reduced by the Aβ42 application alone. The effect of CHF5074 was not reproduced by ibuprofen (3 μM or 500 μM) or R-flurbiprofen (3 μM or 100 μM), as both compounds limited the pro-inflammatory gene expression but did not modify the anti-inflammatory/phagocytic transcription. These data show that CHF5074 specifically drives the expression of microglia M2 markers either in young Tg2576 hippocampus or in primary astrocyte-microglia cultures, suggesting its potential therapeutic efficacy as microglial modulator in the early phase of AD.


Journal of Nutritional Biochemistry | 2013

Ethyl-eicosapentaenoic acid ameliorates the clinical course of experimental allergic encephalomyelitis induced in dark agouti rats

Serafina Salvati; Antonella Di Biase; Lucilla Attorri; Rita Di Benedetto; Massimo Sanchez; Luca Lorenzini; Marco Alessandri; Laura Calzà

Eicosapentaenoic acid (EPA), a fatty acid present in high amount in fish, modulates immune response and stimulates myelin gene expression. In the present paper, we investigated the effects of EPA in an established animal model for multiple sclerosis (MS): experimental autoimmune encephalomyelitis (EAE) induced in dark agouti rats. Diets supplemented either with 0.2% or 0.4% of EPA were administrated daily from the day of induction until the end of experiment. One group of rats received diet supplemented with 0.2% of EPA 10 days before induction. The control group (immunized rats) was fed with chow diet. The animals were analyzed at two different stages of the disease: during the acute phase (14 d.p.i.) and during the recovery phase (32 d.p.i.). We showed a delayed onset of clinical severity of disease in all groups of rats fed EPA-supplemented diets. This effect was associated to an increased expression of myelin proteins and an improved integrity of the myelin sheath as well as an up-regulation of FoxP3 expression in the central nervous system during the acute phase of EAE. No significant changes in T cell subsets were noted at the periphery. On the contrary, during the recovery phase of EAE, in animals assuming EPA-supplemented diet, an increase of CD4(+)CD25(+) and CD4(+)CD25(+)FoxP3(+) in peripheral lymphocytes was noted. Our results indicate that EPA-supplemented diets may provide benefits to MS patients.


Journal of Neuroendocrinology | 2011

Triiodothyronine Administration Ameliorates the Demyelination/Remyelination Ratio in a Non-Human Primate Model of Multiple Sclerosis by Correcting Tissue Hypothyroidism

G. D’Intino; Luca Lorenzini; Mercedes Fernandez; A. Taglioni; G. Perretta; G. Del Vecchio; P. Villoslada; Luciana Giardino; Laura Calzà

Remyelination failure is a key landmark in chronic progression of multiple sclerosis (MS), the most diffuse demyelinating disease in human, but the reasons for this are still unknown. It has been shown that thyroid hormone administration in the rodent models of acute and chronic demyelinating diseases improved their clinical course, pathology and remyelination. In the present study, we translated this therapeutic attempt to experimental allergic encephalomyelitis (EAE) in the non‐human primate Callithrix Jacchus (marmoset). We report that short protocols of triiodothyronine treatment shifts the demyelination/remyelination balance toward remyelination, as assessed by morphology, immunohistochemistry and molecular biology, and improves the clinical course of the disease. We also found that severely ill animals display hypothyroidism and severe alteration of deiodinase and thyroid hormone receptor mRNAs expression in the spinal cord, which was completely corrected by thyroid hormone treatment. We therefore suggest that thyroid hormone treatment improves myelin sheath morphology in marmoset EAE, by correcting the dysfunction of thyroid hormone cellular effectors.


Current Topics in Medicinal Chemistry | 2013

From the Multifactorial Nature of Alzheimer`s Disease to Multitarget Therapy: The Contribution of the Translational Approach

Laura Calzà; Vito Antonio Baldassarro; Alessandro Giuliani; Luca Lorenzini; Mercedes Fernandez; Chiara Mangano; Sandra Sivilia; Marco Alessandri; Marco Gusciglio; Roberta Torricella; Luciana Giardino

The drug discovery for disease-modifying agents in Alzheimer disease (AD) is facing a failure of clinical trials with drugs based on two driving hypotheses, i.e. the cholinergic and amyloidogenic hypotheses. In this article we recapitulate the main aspects of AD pathology, focusing on possible mechanisms for synaptic dysfunction, neurodegeneration and inflammation. We then present the pharmacological and neurobiological profile of a novel compound (CHF5074) showing both anti-inflammatory and gamma-secretase modulatory activities, discussing the possible time-window for effective treatment in an AD transgenic mouse model. Finally, the concept of cognitive reserve is introduced as possible target for preventive therapies.

Collaboration


Dive into the Luca Lorenzini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno P. Imbimbo

Chiesi Farmaceutici S.p.A.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gino Villetti

Chiesi Farmaceutici S.p.A.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge