Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Roz is active.

Publication


Featured researches published by Luca Roz.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment

Giulia Bertolini; Luca Roz; Paola Perego; Monica Tortoreto; Enrico Fontanella; Laura Gatti; Graziella Pratesi; Alessandra Fabbri; Francesca Andriani; Stella Tinelli; Elena Roz; Roberto Caserini; Salvatore Lo Vullo; Tiziana Camerini; Luigi Mariani; Domenico Delia; Elisa Calabrò; Ugo Pastorino; Gabriella Sozzi

The identification of lung tumor-initiating cells and associated markers may be useful for optimization of therapeutic approaches and for predictive and prognostic information in lung cancer patients. CD133, a surface glycoprotein linked to organ-specific stem cells, was described as a marker of cancer-initiating cells in different tumor types. Here, we report that a CD133+, epithelial-specific antigen-positive (CD133+ESA+) population is increased in primary nonsmall cell lung cancer (NSCLC) compared with normal lung tissue and has higher tumorigenic potential in SCID mice and expression of genes involved in stemness, adhesion, motility, and drug efflux than the CD133− counterpart. Cisplatin treatment of lung cancer cells in vitro resulted in enrichment of CD133+ fraction both after acute cytotoxic exposure and in cells with stable cisplatin-resistant phenotype. Subpopulations of CD133+ABCG2+ and CD133+CXCR4+ cells were spared by in vivo cisplatin treatment of lung tumor xenografts established from primary tumors. A tendency toward shorter progression-free survival was observed in CD133+ NSCLC patients treated with platinum-containing regimens. Our results indicate that chemoresistant populations with highly tumorigenic and stem-like features are present in lung tumors. The molecular features of these cells may provide the rationale for more specific therapeutic targeting and the definition of predictive factors in clinical management of this lethal disease.


Proceedings of the National Academy of Sciences of the United States of America | 2011

MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer

Mattia Boeri; Carla Verri; Davide Conte; Luca Roz; Piergiorgio Modena; Federica Facchinetti; Elisa Calabrò; Carlo M. Croce; Ugo Pastorino; Gabriella Sozzi

The efficacy of computed tomography (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials. Critical issues remain the frequency of unnecessary treatments and impact on mortality, indicating the need for biomarkers of aggressive disease. We explored microRNA (miRNA) expression profiles of lung tumors, normal lung tissues and plasma samples from cases with variable prognosis identified in a completed spiral-CT screening trial with extensive follow-up. miRNA expression patterns significantly distinguished: (i) tumors from normal lung tissues, (ii) tumor histology and growth rate, (iii) clinical outcome, and (iv) year of lung cancer CT detection. Interestingly, miRNA profiles in normal lung tissues also displayed remarkable associations with clinical features, suggesting the influence of a permissive microenvironment for tumor development. miRNA expression analyses in plasma samples collected 1–2 y before the onset of disease, at the time of CT detection and in disease-free smokers enrolled in the screening trial, resulted in the generation of miRNA signatures with strong predictive, diagnostic, and prognostic potential (area under the ROC curve ≥ 0.85). These signatures were validated in an independent cohort from a second randomized spiral-CT trial. These results indicate a role for miRNAs in lung tissues and plasma as molecular predictors of lung cancer development and aggressiveness and have theoretical and clinical implication for lung cancer management.


Journal of Clinical Oncology | 2003

Quantification of Free Circulating DNA As a Diagnostic Marker in Lung Cancer

Gabriella Sozzi; Davide Conte; MariaElena Leon; Rosalia Cirincione; Luca Roz; Cathy Ratcliffe; Elena Roz; Nicola Cirenei; Massimo Bellomi; Giuseppe Pelosi; Marco A. Pierotti; Ugo Pastorino

Purpose: Analysis of circulating DNA in plasma can provide a useful marker for earlier lung cancer detection. This study was designed to assess the sensitivity and specificity of a quantitative molecular assay of circulating DNA to identify patients with lung cancer and monitor their disease. Materials and Methods: The amount of plasma DNA was determined through the use of real-time quantitative polymerase chain reaction (PCR) amplification of the human telomerase reverse transcriptase gene (hTERT) in 100 non–small-cell lung cancer patients and 100 age-, sex-, and smoking-matched controls. Screening performance of the assay was calculated through the receiver operating characteristic (ROC) curve. Odds ratios were calculated using conditional logistic regression analysis. Results: Median concentration of circulating plasma DNA in patients was almost eight times the value detected incontrols (24.3 v 3.1 ng/mL). The area under the ROC curve was 0.94 (95% CI, 0.907 to 0.973). Plasma DNA was a strong risk fact...


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Journal of Clinical Oncology | 2014

Clinical Utility of a Plasma-Based miRNA Signature Classifier Within Computed Tomography Lung Cancer Screening: A Correlative MILD Trial Study

Gabriella Sozzi; Mattia Boeri; Marta Rossi; Carla Verri; Paola Suatoni; Francesca Bravi; Luca Roz; Davide Conte; Michela Grassi; Nicola Sverzellati; Alfonso Marchianò; Eva Negri; Carlo La Vecchia; Ugo Pastorino

PURPOSE Recent screening trial results indicate that low-dose computed tomography (LDCT) reduces lung cancer mortality in high-risk patients. However, high false-positive rates, costs, and potential harms highlight the need for complementary biomarkers. The diagnostic performance of a noninvasive plasma microRNA signature classifier (MSC) was retrospectively evaluated in samples prospectively collected from smokers within the randomized Multicenter Italian Lung Detection (MILD) trial. PATIENTS AND METHODS Plasma samples from 939 participants, including 69 patients with lung cancer and 870 disease-free individuals (n = 652, LDCT arm; n = 287, observation arm) were analyzed by using a quantitative reverse transcriptase polymerase chain reaction-based assay for MSC. Diagnostic performance of MSC was evaluated in a blinded validation study that used prespecified risk groups. RESULTS The diagnostic performance of MSC for lung cancer detection was 87% for sensitivity and 81% for specificity across both arms, and 88% and 80%, respectively, in the LDCT arm. For all patients, MSC had a negative predictive value of 99% and 99.86% for detection and death as a result of disease, respectively. LDCT had sensitivity of 79% and specificity of 81% with a false-positive rate of 19.4%. Diagnostic performance of MSC was confirmed by time dependency analysis. Combination of both MSC and LDCT resulted in a five-fold reduction of LDCT false-positive rate to 3.7%. MSC risk groups were significantly associated with survival (χ1(2) = 49.53; P < .001). CONCLUSION This large validation study indicates that MSC has predictive, diagnostic, and prognostic value and could reduce the false-positive rate of LDCT, thus improving the efficacy of lung cancer screening.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines

Luca Roz; Marcella Gramegna; Hideshi Ishii; Carlo M. Croce; Gabriella Sozzi

Loss of expression of the Fhit protein is often associated with the development of many human epithelial cancers, including lung and cervical carcinomas. Restoration of Fhit expression in cell lines derived from these tumors has however yielded conflicting results, prompting the need for careful evaluation of the oncosuppressive potential of FHIT. In the present study, we have investigated the effect of Fhit reintroduction in seven lung cancer and three cervical cancer cell lines. To achieve efficient gene transfer and high levels of transgene expression, we have used an adenoviral vector to transduce the FHIT gene. The induction of apoptosis was evaluated by using the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay and propidium iodide staining. Activation of caspases was detected by using Western blot analysis, and tumorigenic potential of transduced cells in the nude mouse was also assessed. Restoration of Fhit expression induced apoptosis in all Fhit-negative cell lines, with Calu-1, H460, and A549 being the most susceptible among the lung cancer cell lines and SiHa cells among cervical carcinomas. Activation of caspase-8 was always associated with Fhit-mediated apoptosis, and in vivo tumorigenicity was either abolished by FHIT gene transfer (in H460 and SK-Mes cells) or strongly suppressed (in A549 and SiHa cells). Our data demonstrate oncosuppressive properties and strong proapoptotic activity of the Fhit protein in lung and cervical cancer cell lines and strengthens the hypothesis of its possible use as a therapeutic tool.


Journal of Clinical Oncology | 2013

A Prognostic DNA Methylation Signature for Stage I Non–Small-Cell Lung Cancer

Juan Sandoval; Jesús Méndez-González; Ernest Nadal; Guoan Chen; F. Javier Carmona; Sergi Sayols; Sebastian Moran; Holger Heyn; Miguel Vizoso; Antonio Gomez; Montse Sanchez-Cespedes; Yassen Assenov; Fabian Müller; Christoph Bock; Miquel Taron; Josefina Mora; Lucia Anna Muscarella; Triantafillos Liloglou; Michael P.A. Davies; Marina Pollán; Maria J. Pajares; Wenceslao Torre; Luis M. Montuenga; Elisabeth Brambilla; John K. Field; Luca Roz; Marco Lo Iacono; Giorgio V. Scagliotti; Rafael Rosell; David G. Beer

PURPOSE Non-small-cell lung cancer (NSCLC) is a tumor in which only small improvements in clinical outcome have been achieved. The issue is critical for stage I patients for whom there are no available biomarkers that indicate which high-risk patients should receive adjuvant chemotherapy. We aimed to find DNA methylation markers that could be helpful in this regard. PATIENTS AND METHODS A DNA methylation microarray that analyzes 450,000 CpG sites was used to study tumoral DNA obtained from 444 patients with NSCLC that included 237 stage I tumors. The prognostic DNA methylation markers were validated by a single-methylation pyrosequencing assay in an independent cohort of 143 patients with stage I NSCLC. RESULTS Unsupervised clustering of the 10,000 most variable DNA methylation sites in the discovery cohort identified patients with high-risk stage I NSCLC who had shorter relapse-free survival (RFS; hazard ratio [HR], 2.35; 95% CI, 1.29 to 4.28; P = .004). The study in the validation cohort of the significant methylated sites from the discovery cohort found that hypermethylation of five genes was significantly associated with shorter RFS in stage I NSCLC: HIST1H4F, PCDHGB6, NPBWR1, ALX1, and HOXA9. A signature based on the number of hypermethylated events distinguished patients with high- and low-risk stage I NSCLC (HR, 3.24; 95% CI, 1.61 to 6.54; P = .001). CONCLUSION The DNA methylation signature of NSCLC affects the outcome of stage I patients, and it can be practically determined by user-friendly polymerase chain reaction assays. The analysis of the best DNA methylation biomarkers improved prognostic accuracy beyond standard staging.


International Journal of Cancer | 2004

Detecting lung cancer in plasma with the use of multiple genetic markers

Francesca Andriani; Davide Conte; Tiziana Mastrangelo; MariaElena Leon; Cathy Ratcliffe; Luca Roz; Giuseppe Pelosi; Peter Goldstraw; Gabriella Sozzi; Ugo Pastorino

Recent studies have demonstrated the possibility to detect genetic changes in plasma DNA of cancer patients. The goal of this study was to validate a panel of molecular markers for lung cancer detection in plasma DNA. Three markers, p53, FHIT and microsatellite alterations at loci on chromosome 3, were used to detect mutations in tumor and plasma DNA of 64 stage I–III non small cell lung cancer patients. p53 mutations were studied by direct sequencing of exons 5 through 8 in tumor DNA and by plaque hybridization assay and sequencing in plasma DNA. Allelic losses were evaluated by fluorescent PCR in tumor and plasma DNA. p53 genomic mutations were detected in 26 (40.6%) of 64 tumor DNA samples and the identical mutation was identified in plasma of 19 (73.1%) of them. Microsatellite alterations at FHIT and 3p loci were observed in 40 (62.5%) tumors and in 23 (35.9%) plasma samples. Of the 40 patients showing microsatellite alterations in tumors, 19 (47.5%) displayed the same change in plasma DNA. At least 1 of the 3 genetic markers (p53, FHIT and 3p) was altered in plasma of 51.6% of all patients and 60.7% of stage I patients. Moreover, genetic markers in plasma identified 29 of 45 (64.4%) of all stages and 15 of 22 (68.2%) of stage I patients whose tumors had an alteration. These results provide the proof of principle that plasma DNA alterations are tumor‐specific in most cases and support blood testing as a noninvasive strategy for early detection.


American Journal of Respiratory and Critical Care Medicine | 2009

Plasma DNA quantification in lung cancer computed tomography screening: five-year results of a prospective study.

Gabriella Sozzi; Luca Roz; Davide Conte; Luigi Mariani; Francesca Andriani; Salvatore Lo Vullo; Carla Verri; Ugo Pastorino

RATIONALE Free circulating plasma DNA has emerged as a potential biomarker for early lung cancer detection. In a previous case-control study we have shown that high levels of plasma DNA are a strong risk factor for lung cancer. OBJECTIVES To assess the diagnostic performance and prognostic value of plasma DNA levels in a cohort of 1,035 heavy smokers monitored by annual spiral computed tomography (CT) for 5 years. METHODS Plasma DNA levels were determined through real-time quantitative PCR at baseline and at time of lung cancer diagnosis. Screening performance of the assay was calculated through the area under the receiver-operating characteristic curve (AUC-ROC). Kaplan-Meier analyses were computed for association with prognosis. MEASUREMENTS AND MAIN RESULTS Median baseline concentration of plasma DNA was not different in individuals who developed CT-detected lung cancers in the 5-year period (n = 38) versus cancer-free control subjects (AUC-ROC, 0.496; P = 0.9330), and only slightly higher at the time of cancer diagnosis (AUC-ROC, 0.607; P = 0.0369). At surgery, plasma DNA was higher in tumors detected at baseline (AUC-ROC, 0.80; P < 0.0001) and in Stage II to IV tumors detected during the first 2 years of screening (AUC-ROC, 0.87; P < 0.0001). A longitudinal study of plasma DNA levels showed increased values approaching to lung cancer diagnosis (P = 0.0010). Higher plasma DNA was significantly associated with poorer 5-year survival (P = 0.0066). CONCLUSIONS Baseline assessment of plasma DNA level does not improve the accuracy of lung cancer screening by spiral CT in heavy smokers. Higher levels of plasma DNA at surgery might represent a risk factor for aggressive disease.


Genes, Chromosomes and Cancer | 1997

Deletion mapping defines three discrete areas of allelic imbalance on chromosome arm 8p in oral and oropharyngeal squamous cell carcinomas

Chu Lee Wu; Luca Roz; Philip Sloan; Andrew P. Read; Susan Holland; Stephen Porter; Crispian Scully; Pm Speight; Nalin Thakker

Deletions on chromosome arm 8p, as defined by allelic imbalance, are a frequent event in many different types of malignant tumors, including those of the head and neck. These regions are thought to harbor tumor suppressor genes. In order to define a high‐density deletion map of this chromosomal arm in oral and oropharyngeal squamous cell carcinomas, we have tested for allelic imbalance in 35 such tumors with 22 short tandem‐repeat polymorphisms. Overall, 21 (60%) of the 35 tumors showed allelic imbalance at one or more loci on chromosome arm 8p. Interstitial deletions defined three discrete areas of deletion: at 8p23, 8p22, and 8p12‐p21. Tumors of TNM stages II–IV showed a significantly higher frequency of allelic imbalance on 8p than did TNM stage I tumors. Our data suggest that there are least three tumor suppressor loci on chromosome arm 8p that may be implicated in oral carcinogenesis. Furthermore, inactivation of such genes may be associated with high‐grade tumors. Genes Chromosomes Cancer 20:347–353, 1997.

Collaboration


Dive into the Luca Roz's collaboration.

Top Co-Authors

Avatar

Gabriella Sozzi

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Ugo Pastorino

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Roz

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge