Luca Sementa
University of Modena and Reggio Emilia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luca Sementa.
Journal of the American Chemical Society | 2014
David Crasto; Giovanni Barcaro; Mauro Stener; Luca Sementa; Alessandro Fortunelli; Amala Dass
Here we present the crystal structure, experimental and theoretical characterization of a Au24(SAdm)16 nanomolecule. The composition was verified by X-ray crystallography and mass spectrometry, and its optical and electronic properties were investigated via experiments and first-principles calculations. Most importantly, the focus of this work is to demonstrate how the use of bulky thiolate ligands, such as adamantanethiol, versus the commonly studied phenylethanethiolate ligands leads to a great structural flexibility, where the metal core changes its shape from five-fold to crystalline-like motifs and can adapt to the formation of Au(24±1)(SAdm)16, namely, Au23(SAdm)16, Au24(SAdm)16, and Au25(SAdm)16. The basis for the construction of a thermodynamic phase diagram of Au nanomolecules in terms of ligands and solvent features is also outlined.
ACS Nano | 2014
Martin Denk; David Kuhness; Margareta Wagner; S. Surnev; Fabio R. Negreiros; Luca Sementa; Giovanni Barcaro; I. Vobornik; Alessandro Fortunelli; F.P. Netzer
Metal tungstates (with general formula MWO4) are functional materials with a high potential for a diverse set of applications ranging from low-dimensional magnetism to chemical sensing and photoelectrocatalytic water oxidation. For high level applications, nanoscale control of film growth is necessary, as well as a deeper understanding and characterization of materials properties at reduced dimensionality. We succeeded in fabricating and characterizing a two-dimensional (2-D) copper tungstate (CuWO4). For the first time, the atomic structure of an ultrathin ternary oxide is fully unveiled. It corresponds to a CuWO4 monolayer arranged in three sublayers with stacking O-W-O/Cu from the interface. The resulting bidimensional structure forms a robust framework with localized regions of anisotropic flexibility. Electronically it displays a reduced band gap and increased density of states close to the Fermi level with respect to the bulk compound. These unique features open a way for new applications in the field of photo- and electrocatalysis, while the proposed synthesis method represents a radically new and general approach toward the fabrication of 2-D ternary oxides.
Journal of Physical Chemistry Letters | 2015
Praneeth Reddy Nimmala; Shevanuja Theivendran; Giovanni Barcaro; Luca Sementa; Chanaka Kumara; Vijay Reddy Jupally; Edoardo Aprà; Mauro Stener; Alessandro Fortunelli; Amala Dass
Ultrastable gold nanomolecule Au144(SCH2CH2Ph)60 upon etching with excess tert-butylbenzenethiol undergoes a core-size conversion and compositional change to form an entirely new core of Au133(SPh-tBu)52. This conversion was studied using high-resolution electrospray mass spectrometry which shows that the core size conversion is initiated after 22 ligand exchanges, suggesting a relatively high stability of the Au144(SCH2CH2Ph)38(SPh-tBu)22 intermediate. The Au144 → Au133 core size conversion is surprisingly different from the Au144 → Au99 core conversion reported in the case of thiophenol, -SPh. Theoretical analysis and ab initio molecular dynamics simulations show that rigid p-tBu groups play a crucial role by reducing the cluster structural freedom, and protecting the cluster from adsorption of exogenous and reactive species, thus rationalizing the kinetic factors that stabilize the Au133 core size. This 144-atom to 133-atom nanomolecules compositional change is reflected in optical spectroscopy and electrochemistry.
Nano Letters | 2011
Giovanni Barcaro; Luca Sementa; Fabio R. Negreiros; Riccardo Ferrando; Alessandro Fortunelli
The magnetism of CoPt nanostructures supported on the MgO(100) surface is investigated via first-principles simulations using 1D models. Nanostructures with L1(0) chemical ordering and cube-on-cube epitaxy are predicted to possess large magnetic moments and easy magnetization axis perpendicular to the surface. However, their magnetic anisotropy energy is roughly halved with respect to the bulk alloy due to a peculiar mixing of particle and support electronic states. The general factors at play in determining this behavior and the implications of these findings are discussed in view of designing room-temperature magnetic bits.
Angewandte Chemie | 2014
Alessandro Fortunelli; William A. Goddard; Yao Sha; Ted H. Yu; Luca Sementa; Giovanni Barcaro; Oliviero Andreussi
Hydrogen fuel cells (FC) are considered essential for a sustainable economy based on carbon-free energy sources, but a major impediment are the costs. First-principles quantum mechanics (density functional theory including solvation) is used to predict how the energies and barriers for the mechanistic steps of the oxygen reduction reaction (ORR) over the fcc(111) platinum surface depend on the dielectric constant of the solvent. The ORR kinetics can be strongly accelerated by decreasing the effective medium polarizability from the high value it has in water. Possible ways to realize this experimentally are suggested. The calculated volcano structure for the dependence of rate on solvent polarization is considered to be general, and should be observed in other electrochemical systems.
Journal of Physical Chemistry A | 2013
Dora J. Borbón-González; Alessandro Fortunelli; Giovanni Barcaro; Luca Sementa; Roy L. Johnston; Alvaro Posada-Amarillas
In this work, we report finding dodecahedral core-shell structures as the putative global minima of Pt13M20 (M = Ag, Au, Cu, Pd) clusters by using the basin hopping method and the many-body Gupta model potential to model interatomic interactions. These nanoparticles consist of an icosahedral 13-atom platinum core encapsulated by a 20 metal-atom shell exhibiting a dodecahedral geometry (and Ih symmetry). The interaction between the icosahedral platinum core and the dodecahedral shell is analyzed in terms of the increase in volume of the icosahedral core, and the strength and stickiness of M-Pt and M-M interactions. Low-lying metastable isomers are also obtained. Local relaxations at the DFT level are performed to verify the energetic ordering and stability of the structures predicted by the Gupta potential finding that dodecahedral core-shell structures are indeed the putative global minima for Pt13Ag20 and Pt13Pd20, whereas decahedral structures are obtained as the minimum energy configurations for Pt13Au20 and Pt13Cu20 clusters.
Journal of Chemical Physics | 2011
L. Gragnaniello; Giovanni Barcaro; Luca Sementa; Francesco Allegretti; G. Parteder; S. Surnev; W. Steurer; Alessandro Fortunelli; F.P. Netzer
The two-dimensional (2D) Co oxide monolayer phase with (9 × 2) structure on Pd(100) has been investigated experimentally by scanning tunneling microscopy (STM) and theoretically by density functional theory (DFT). The high-resolution STM images reveal a complex pattern which on the basis of DFT calculations is interpreted in terms of a coincidence lattice, consisting of a CoO(111)-type bilayer with significant symmetry relaxation and height modulations to reduce the polarity in the overlayer. The most stable structure displays an unusual zig-zag type of antiferromagnetic ordering. The (9 × 2) Co oxide monolayer is energetically almost degenerate with the c(4 × 2) monolayer phase, which is derived from a single CoO(100)-type layer with a Co(3)O(4) vacancy structure. Under specific preparation conditions, the (9 × 2) and c(4 × 2) structures can be observed in coexistence on the Pd(100) surface and the two phases are separated by a smooth interfacial boundary line, which has been analyzed at the atomic level by STM and DFT. The here described 2D Co oxide nanolayer systems are characterized by a delicate interplay of chemical, electronic, and interfacial strain interactions and the associated complexities in the theoretical description are emphasized and discussed.
Journal of Materials Chemistry | 2017
Chunrong Yin; Fabio R. Negreiros; Giovanni Barcaro; Atsushi Beniya; Luca Sementa; Eric C. Tyo; Stephan Bartling; Karl-Heinz Meiwes-Broer; Sönke Seifert; Hirohito Hirata; Noritake Isomura; Sandeep Nigam; Chiranjib Majumder; Yoshihide Watanabe; Alessandro Fortunelli; Stefan Vajda
Catalytic CO oxidation is unveiled on size-selected Pt_(10) clusters deposited on two very different ultrathin (≈0.5–0.7 nm thick) alumina films: (i) a highly ordered alumina obtained under ultra-high vacuum (UHV) by oxidation of the NiAl(110) surface and (ii) amorphous alumina obtained by atomic layer deposition (ALD) on a silicon chip that is a close model of real-world supports. Notably, when exposed to realistic reaction conditions, the Pt_(10)/UHV-alumina system undergoes a morphological transition in both the clusters and the substrate, and becomes closely akin to Pt_(10)/ALD-alumina, thus reconciling UHV-type surface-science and real-world experiments. The Pt_(10) clusters, thoroughly characterized via combined experimental techniques and theoretical analysis, exhibit among the highest CO oxidation activity per Pt atom reported for CO oxidation catalysts, due to the interplay of ultra-small size and support effects. A coherent interdisciplinary picture then emerges for this catalytic system.
Journal of Chemical Theory and Computation | 2012
Luca Sementa; Giovanni Barcaro; Fabio R. Negreiros; I. O. Thomas; F.P. Netzer; Anna Maria Ferrari; Alessandro Fortunelli
Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.
ACS Omega | 2017
Mikhail Agrachev; Sabrina Antonello; Tiziano Dainese; Marco Ruzzi; Alfonso Zoleo; Edoardo Aprà; Niranjan Govind; Alessandro Fortunelli; Luca Sementa; Flavio Maran
Several research groups have observed magnetism in monolayer-protected gold cluster samples, but the results were often contradictory, and thus, a clear understanding of this phenomenon is still missing. We used Au25(SCH2CH2Ph)180, which is a paramagnetic cluster that can be prepared with atomic precision and whose structure is known precisely. Previous magnetometry studies only detected paramagnetism. We used samples representing a range of crystallographic orders and studied their magnetic behaviors using electron paramagnetic resonance (EPR). As a film, Au25(SCH2CH2Ph)180 exhibits a paramagnetic behavior, but at low temperature, ferromagnetic interactions are detectable. One or few single crystals undergo physical reorientation with the applied field and exhibit ferromagnetism, as detected through hysteresis experiments. A large collection of microcrystals is magnetic even at room temperature and shows distinct paramagnetic, superparamagnetic, and ferromagnetic behaviors. Simulation of the EPR spectra shows that both spin−orbit (SO) coupling and crystal distortion are important to determine the observed magnetic behaviors. Density functional theory calculations carried out on single cluster and periodic models predict the values of SO coupling and crystal-splitting effects in agreement with the EPR-derived quantities. Magnetism in gold nanoclusters is thus demonstrated to be the outcome of a very delicate balance of factors. To obtain reproducible results, the samples must be (i) controlled for composition and thus be monodisperse with atomic precision, (ii) of known charge state, and (iii) well-defined in terms of crystallinity and experimental conditions.