Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Szalontay is active.

Publication


Featured researches published by Luca Szalontay.


The Prostate | 2011

LHRH antagonist Cetrorelix reduces prostate size and gene expression of proinflammatory cytokines and growth factors in a rat model of benign prostatic hyperplasia.

Ferenc G. Rick; Andrew V. Schally; Norman L. Block; Gabor Halmos; Roberto Perez; Jesus B. Fernandez; Irving Vidaurre; Luca Szalontay

Recent findings suggest that BPH has an inflammatory component. Clinical trials have documented that therapy with LHRH antagonist Cetrorelix causes a marked and prolonged improvement in LUTS in men with symptomatic BPH. We investigated the mechanism of action and effect of Cetrorelix in a rat model of BPH.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases

Ferenc G. Rick; Andrew V. Schally; Luca Szalontay; Norman L. Block; Karoly Szepeshazi; Mehrdad Nadji; Marta Zarandi; Florian Hohla; Stefan Buchholz; Stephan Seitz

The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Antagonists of growth hormone-releasing hormone (GHRH) reduce prostate size in experimental benign prostatic hyperplasia

Ferenc G. Rick; Andrew V. Schally; Norman L. Block; Mehrdad Nadji; Karoly Szepeshazi; Marta Zarandi; Irving Vidaurre; Roberto Perez; Gabor Halmos; Luca Szalontay

Growth hormone-releasing hormone (GHRH), a hypothalamic polypeptide, acts as a potent autocrine/paracrine growth factor in many cancers. Benign prostatic hyperplasia (BPH) is a pathologic proliferation of prostatic glandular and stromal tissues; a variety of growth factors and inflammatory processes are inculpated in its pathogenesis. Previously we showed that potent synthetic antagonists of GHRH strongly inhibit the growth of diverse experimental human tumors including prostate cancer by suppressing various tumoral growth factors. The influence of GHRH antagonists on animal models of BPH has not been investigated. We evaluated the effects of the GHRH antagonists JMR-132 given at doses of 40 μg/d, MIA-313 at 20 μg/d, and MIA-459 at 20 μg/d in testosterone-induced BPH in Wistar rats. Reduction of prostate weights was observed after 6 wk of treatment with GHRH antagonists: a 17.8% decrease with JMR-132 treatment; a 17.0% decline with MIA-313 treatment; and a 21.4% reduction with MIA-459 treatment (P < 0.05 for all). We quantified transcript levels of genes related to growth factors, inflammatory cytokines, and signal transduction and identified significant changes in the expression of more than 80 genes (P < 0.05). Significant reductions in protein levels of IL-1β, NF-κβ/p65, and cyclooxygenase-2 (COX-2) also were observed after treatment with a GHRH antagonist. We conclude that GHRH antagonists can lower prostate weight in experimental BPH. This reduction is caused by the direct inhibitory effects of GHRH antagonists exerted through prostatic GHRH receptors. This study sheds light on the mechanism of action of GHRH antagonists in BPH and suggests that GHRH antagonists should be considered for further development as therapy for BPH.


The Journal of Urology | 2012

Combining Growth Hormone-Releasing Hormone Antagonist With Luteinizing Hormone-Releasing Hormone Antagonist Greatly Augments Benign Prostatic Hyperplasia Shrinkage

Ferenc G. Rick; Luca Szalontay; Andrew V. Schally; Norman L. Block; Mehrdad Nadji; Karoly Szepeshazi; Irving Vidaurre; Marta Zarandi; Magdolna Kovacs; Zoltan Rekasi

PURPOSE Benign prostatic hyperplasia often affects aging men. Antagonists of the neuropeptide growth hormone-releasing hormone reduced prostate weight in an androgen induced benign prostatic hyperplasia model in rats. Luteinizing hormone-releasing hormone antagonists also produce marked, protracted improvement in lower urinary tract symptoms, reduced prostate volume and an increased urinary peak flow rate in men with benign prostatic hyperplasia. We investigated the influence of a combination of antagonists of growth hormone-releasing hormone and luteinizing hormone-releasing hormone on animal models of benign prostatic hyperplasia. MATERIALS AND METHODS We evaluated the effects of the growth hormone-releasing hormone antagonist JMR-132, given at a dose of 40 μg daily, the luteinizing hormone-releasing hormone antagonist cetrorelix, given at a dose of 0.625 mg/kg, and their combination on testosterone induced benign prostatic hyperplasia in adult male Wistar rats in vivo. Prostate tissue was examined biochemically and histologically. Serum levels of growth hormone, luteinizing hormone, insulin-like growth factor-1, dihydrotestosterone and prostate specific antigen were determined. RESULTS Marked shrinkage of the rat prostate (30.3%) occurred in response to the combination of growth hormone-releasing hormone and luteinizing hormone-releasing hormone antagonists (p<0.01). The combination strongly decreased prostatic prostate specific antigen, 6-transmembrane epithelial antigen of the prostate, interleukin-1β, nuclear factor-κβ and cyclooxygenase-2, and decreased serum prostate specific antigen. CONCLUSIONS A combination of growth hormone-releasing hormone antagonist with luteinizing hormone-releasing hormone antagonist potentiated a reduction in prostate weight in an experimental benign prostatic hyperplasia model. Results suggest that this shrinkage in prostate volume was induced by the direct inhibitory effects of growth hormone-releasing hormone and luteinizing hormone-releasing hormone antagonists exerted through their respective prostatic receptors. These findings suggest that growth hormone-releasing hormone antagonists and/or their combination with luteinizing hormone-releasing hormone antagonists should be considered for further development as therapy for benign prostatic hyperplasia.


Cell Cycle | 2009

GHRH antagonist causes DNA damage leading to p21 mediated cell cycle arrest and apoptosis in human colon cancer cells.

Florian Hohla; Stefan Buchholz; Andrew V. Schally; Stefan Seitz; Ferenc G. Rick; Luca Szalontay; Jozsef L. Varga; Marta Zarandi; Gabor Halmos; Irving Vidaurre; Awtar Krishan; Metin Kurtoglu; Sudhir Chandna; Elmar Aigner; Christian Datz

We investigated the mechanisms of inhibitory effect of growth hormone-releasing hormone (GHRH) antagonist JMR-132 on the growth of HT29, HCT-116 and HCT-15 human colon cancer cells in vitro and in vivo. High-affinity binding sites for GHRH and mRNA for GHRH and splice variant-1 (SV1) of the GHRH receptor were found in all three cell lines tested. Proliferation of HT-29, HCT-116 and HCT-15 cells was significantly inhibited in vitro by JMR-132. Time course studies revealed that the treatment of human HCT-116 colon cancer cells with 10μM GHRH antagonist JMR-132 causes a significant DNA damage as shown by an increase in olive tail moment (OTM) and loss of inner mitochondrial membrane potential (∆Ψm). Western blotting demonstrated a time-dependent increase in protein levels of phospho-p53 (Ser46), Bax, cleaved caspase-9, -3, cleavage of poly(ADP-ribose)polymerase (PARP) and a decrease in Bcl-2 levels. An augmentation in cell cycle checkpoint protein p21Waf1/Cip1 was accompanied by a cell cycle arrest in S-phase. DNA fragmentation visualized by the comet assay and the number of apoptotic cells increased time dependently as determined by flow cytometric annexinV and PI staining assays. In vivo, JMR-132 decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic mice up to 75% (p


Proceedings of the National Academy of Sciences of the United States of America | 2013

Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist

Ferenc G. Rick; Andrew Abi-Chaker; Luca Szalontay; Roberto Perez; Miklós Jászberényi; Arumugam R. Jayakumar; Nagarajarao Shamaladevi; Karoly Szepeshazi; Irving Vidaurre; Gabor Halmos; Awtar Krishan; Norman L. Block; Andrew V. Schally

Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 μg/d; and a 18.4% reduction with 50 μg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κβ/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH.


The Prostate | 2013

Mechanisms of synergism between antagonists of growth hormone-releasing hormone and antagonists of luteinizing hormone-releasing hormone in shrinking experimental benign prostatic hyperplasia.

Ferenc G. Rick; Andrew V. Schally; Norman L. Block; Andrew Abi-Chaker; Awtar Krishan; Luca Szalontay

Benign prostatic hyperplasia (BPH) affects aging men. Combined therapy with antagonists of growth hormone‐releasing hormone (GHRH) and of luteinizing hormone‐releasing hormone (LHRH or GnRH) induces prostate shrinkage in rat models. We investigated the mechanisms of action of this combination on cell cycle traverse and expression of prostatic genes.


Peptides | 2010

A correlation of endocrine and anticancer effects of some antagonists of GHRH.

Magdolna Kovacs; Andrew V. Schally; Florian Hohla; Ferenc G. Rick; Eva Pozsgai; Luca Szalontay; Jozsef L. Varga; Marta Zarandi

GHRH receptor antagonists inhibit growth and metastasis of a large number of experimental tumors expressing the pituitary GHRH receptor (pGHRH-R) and its major splice variant SV1. In this study, using Western blot, we demonstrated that DBTRG-05 and U-87MG human glioblastoma cell lines express pGHRH-R at levels 6-15 times higher than SV1. To reveal a correlation between the anticancer activity and the endocrine potency on inhibition of GH release, we compared the antitumor effect of GHRH antagonists JV-1-63 and MZJ-7-138 on growth of DBTRG-05 human glioblastomas grafted into athymic nude mice with their inhibitory potency on GH release. JV-1-63 strongly suppressed the stimulated GH secretion induced by clonidine in rats and inhibited the exogenous GHRH-induced GH surge by 88-99% in vivo and in vitro. MZJ-7-138 decreased the stimulated GH secretion by 58% in vitro and showed only a tendency to inhibit GH secretion in vivo. The strong inhibitor of GH release JV-1-63 reduced tumor growth of DBTRG-05 glioblastomas in nude mice by 46%, while the weak GH release suppressor MZJ-7-138 did not have an effect. Exposure of DBTRG-05 cells to the GHRH antagonists in vitro caused an upregulation of mRNA expression for pGHRH-R and a downregulation of SV1 expression, with JV-1-63 having significantly greater effects than MZJ-7-138. Our results demonstrate that a positive correlation exists between the endocrine potency and the antiproliferative efficacy of GHRH antagonists in tumors strongly expressing pGHRH-R.


BMC Cancer | 2014

Triple negative breast cancers express receptors for LHRH and are potential therapeutic targets for cytotoxic LHRH-analogs, AEZS 108 and AEZS 125

Stephan Seitz; Stefan Buchholz; Andrew V. Schally; Florian Weber; Monika Klinkhammer-Schalke; Elisabeth C. Inwald; Roberto Perez; Ferenc G. Rick; Luca Szalontay; Florian Hohla; Sabine E. Segerer; Chui Wai Kwok; Olaf Ortmann; Jörg B. Engel

BackgroundTriple negative breast cancer (TNBC) is a distinct subtype of breast cancer burdened with a dismal prognosis due to the lack of effective therapeutic agents. Receptors for LHRH (luteinizing hormone-releasing hormone) can be successfully targeted with AEZS-108 [AN-152], an analog of LHRH conjugated to doxorubicin. Our study evaluates the presence of this target LHRH receptor in human specimens of TNBC and investigates the efficacy and toxicity of AEZS-108 in vivo. We also studied in vitro activity of AEZS-125, a new LHRH analog conjugated with the highly potent natural compound, Disorazol Z.Methods69 human surgical specimens of TNBC were investigated for LHRH-R expression by immunohistochemistry. Expression of LHRH-R in two TNBC cell lines was evaluated by real time RT-PCR. Cytotoxicity of AEZS-125 was evaluated by Cell Titer Blue cytoxicity assay. LHRH- receptor expression was silenced with an siRNA in both cell lines. For the in vivo experiments an athymic nude mice model xenotransplanted with the cell lines, MDA-MB-231 and HCC 1806, was used. The animals were randomised to three groups receiving solvent only (d 1, 7, 14, i.v.) for control, AEZS-108 (d 1, 7, 14, i.v.) or doxorubicin at an equimolar dose (d 1, 7, 14, i.v.).ResultsIn human clinical specimens of TNBC, expression of the LHRH-receptor was present in 49% (n = 69).HCC 1806 and MDA-MB-231 TNBC cells expressed mRNA for the LHRH-receptor. Silencing of the LHRH-receptor significantly decreased the cytotoxic effect of AEZS-108. MDA-MB-231 and HCC 1806 tumors xenografted into nude mice were significantly inhibited by treatment with AEZS-108; doxorubicin at equimolar doses was ineffective.As compared to AEZS 108, the Disorazol Z – LHRH conjugate, AEZS-125, demonstrated an increased cytotoxicity in vitro in HCC 1806 and MDA-MB-231 TNBC; this was diminished by receptor blockade with synthetic LHRH agonist (triptorelin) pretreatment.ConclusionThe current study confirms that LHRH-receptors are expressed by a significant proportion of TNBC and can be successfully used as homing sites for cytotoxic analogs of LHRH, such as AEZS-108 and AEZS-125.


Cancer | 2012

Novel antagonists of growth hormone-releasing hormone inhibit growth and vascularization of human experimental ovarian cancers.

Anna Klukovits; Andrew V. Schally; Luca Szalontay; Irving Vidaurre; Andrea Papadia; Marta Zarandi; Jozsef L. Varga; Norman L. Block; Gabor Halmos

Antagonists of growth hormone‐releasing hormone (GHRH) inhibit the proliferation of various human cancer cell lines and experimental tumors by mechanisms that include direct action on GHRH receptors in cancer cells.

Collaboration


Dive into the Luca Szalontay's collaboration.

Top Co-Authors

Avatar

Ferenc G. Rick

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. V. Schally

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Seitz

University of Regensburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge