Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Tanteri is active.

Publication


Featured researches published by Luca Tanteri.


Bulletin of Volcanology | 2014

The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity

Federico Di Traglia; Emanuele Intrieri; Teresa Nolesini; Federica Bardi; Chiara Del Ventisette; Federica Ferrigno; Sara Frangioni; William Frodella; Giovanni Gigli; Alessia Lotti; Carlo Tacconi Stefanelli; Luca Tanteri; Davide Leva; Nicola Casagli

Stromboli volcano (Aeolian Archipelago, Southern Italy) experienced an increase in its volcanic activity from late December 2012 to March 2013, when it produced several lava overflows, major Strombolian explosions, crater-wall collapses pyroclastic density currents and intense spatter activity. An analysis of the displacement of the NE portion of the summit crater terrace and the unstable NW flank of the volcano (Sciara del Fuoco depression) has been performed with a ground-based interferometric synthetic aperture radar (GBInSAR) by dividing the monitored part of the volcano into five sectors, three in the summit vents region and two in the Sciara del Fuoco. Changes in the displacement rate were observed in sectors 2 and 3. Field and thermal surveys revealed the presence of an alignment of fumaroles confirming the existence of an area of structural discontinuity between sectors 2 and 3. High displacement rates in sector 2 are interpreted to indicate the increase in the magmastatic pressure within the shallow plumbing systems, related to the rise of the magma level within the conduits, while increased displacement rates in sector 3 are connected to the lateral expansion of the shallow plumbing system. The increases and decreases in the displacement rate registered by the GBInSAR system in the upper part of the volcano have been used as a proxy for changes in the pressure conditions in the shallow plumbing system of Stromboli volcano and hence to forecast the occurrence of phases of higher-intensity volcanic activity.


Journal of Maps | 2012

Landslide inventory map for the Briga and the Giampilieri catchments, NE Sicily, Italy

Francesca Ardizzone; Giuseppe Basile; Mauro Cardinali; Nicola Casagli; S. Del Conte; C. Del Ventisette; Federica Fiorucci; Francesca Garfagnoli; Giovanni Gigli; Fausto Guzzetti; Giulio Iovine; Alessandro Cesare Mondini; Sandro Moretti; M. Panebianco; Federico Raspini; Paola Reichenbach; Mauro Rossi; Luca Tanteri; O. Terranova

On 1 October 2009, a high intensity storm hit the Ionian coast of Sicily, SW of Messina, Italy. The Santo Stefano di Briga rain gauge, located 2 km W of the Ionian coast, recorded 225 mm of rain in seven hours. The intense rainfall event triggered abundant slope failures, and resulted in widespread erosion and deposition of debris along ephemeral drainage channels, extensive inundation, and local modifications of the coastline. Landslides occurred in a territory prone to slope failures, due to the local geological and geomorphological settings. Many landslides were related to the presence of roads lacking adequate drainage. Abandoned terraced slopes lacking proper drainage, and unmaintained dry walls were also related to slope failures. Damage was particularly severe in small villages and at several sites along the transportation network. The shallow landslides and the inundation resulted in 37 fatalities, including 31 deaths and six missing persons, and innumerable injured people. After the event, an accurate landslide inventory map was prepared for the Briga and the Giampilieri catchments. The map shows: (i) the distribution of the event landslides triggered by the 1 October 2009 rainfall event; (ii) the distribution of the pre-existing slope failures; and (iii) other geomorphological features related to fluvial processes and slope movements. The landslide inventory map was prepared at 1:10,000 scale through a combination of field surveys and photo-interpretation of pre-event and post-event, stereoscopic and pseudo-stereoscopic, aerial photography. Different types of aerial photographs were analysed visually to prepare the landslide inventory map. The event landslides were mapped through the interpretation of pseudo-stereoscopic colour photographs taken shortly after the event at 1:3500 scale, combined with digital stereoscopic photographs at approximately 1:4500 scale, taken in November 2009. The pre-event landslides and the associated geomorphological features were mapped using 1:33,000 scale aerial photographs flown in 1954, 1955, and 2005. The event and pre-existing landslides were checked in the field in the period October–November 2009.


Geoenvironmental Disasters | 2017

Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning

Nicola Casagli; William Frodella; Stefano Morelli; Veronica Tofani; Andrea Ciampalini; Emanuele Intrieri; Federico Raspini; Guglielmo Rossi; Luca Tanteri; Ping Lu

BackgroundThe current availability of advanced remote sensing technologies in the field of landslide analysis allows for rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, as well as optimizing fieldwork and investigating hazardous or inaccessible areas, while granting at the same time the safety of the operators. Among Earth Observation (EO) techniques in the last decades optical Very High Resolution (VHR) and Synthetic Aperture Radar (SAR) imagery represent very effective tools for these implementations, since very high spatial resolution can be obtained by means of optical systems, and by the new generations of sensors designed for interferometric applications. Although these spaceborne platforms have revisiting times of few days they still cannot match the spatial detail or time resolution achievable by means of Unmanned Aerial Vehicles (UAV) Digital Photogrammetry (DP), and ground-based devices, such as Ground-Based Interferometric SAR (GB-InSAR), Terrestrial Laser Scanning (TLS) and InfraRed Thermography (IRT), which in the recent years have undergone a significant increase of usage, thanks to their technological development and data quality improvement, fast measurement and processing times, portability and cost-effectiveness. In this paper the potential of the abovementioned techniques and the effectiveness of their synergic use is explored in the field of landslide analysis by analyzing various case studies, characterized by different slope instability processes, spatial scales and risk management phases.ResultsSpaceborne optical Very High Resolution (VHR) and SAR data were applied at a basin scale for analysing shallow rapid-moving and slow-moving landslides in the emergency management and post- disaster phases, demonstrating their effectiveness for post-disaster damage assessment, landslide detection and rapid mapping, the definition of states of activity and updating of landslide inventory maps. The potential of UAV-DP for very high resolution periodical checks of instability phenomena was explored at a slope-scale in a selected test site; two shallow landslides were detected and characterized, in terms of areal extension, volume and temporal evolution. The combined use of GB-InSAR, TLS and IRT ground based methods, was applied for the surveying, monitoring and characterization of rock slides, unstable cliffs and translational slides. These applications were evaluated in the framework of successful rapid risk scenario evaluation, long term monitoring and emergency management activities. All of the results were validated by means of field surveying activities.ConclusionThe attempt of this work is to give a contribution to the current state of the art of advanced spaceborne and ground based techniques applied to landslide studies, with the aim of improving and extending their investigative capacity in the framework of a growing demand for effective Civil Protection procedures in pre- and post-disaster initiatives. Advantages and limitations of the proposed methods, as well as further fields of applications are evaluated for landslide-prone areas.


International Journal of Applied Earth Observation and Geoinformation | 2013

Mapping natural and urban environments using airborne multi-sensor ADS40–MIVIS–LiDAR synergies

Giovanni Forzieri; Luca Tanteri; Gabriele Moser; Filippo Catani

a b s t r a c t The recent and forthcoming availability of high spatial resolution imagery from satellite and airborne sensors offers the possibility to generate an increasing number of remote sensing products and opens new promising opportunities for multi-sensor classification. Data fusion strategies, applied to modern airborne Earth observation systems, including hyperspectral MIVIS, color-infrared ADS40, and LiDAR sensors, are explored in this paper for fine-scale mapping of heterogeneous urban/rural landscapes. An over 1000-element array of supervised classification results is generated by varying the underlying classification algorithm (Maximum Likelihood/Spectral Angle Mapper/Spectral Information Divergence), the remote sensing data stack (different multi-sensor data combination), and the set of hyperspectral channels used for classification (feature selection). The analysis focuses on the identification of the best performing data fusion configuration and investigates sensor-derived marginal improvements. Numeri- cal experiments, performed on a 20-km stretch of the Marecchia River (Italy), allow for a quantification of the synergies of multi-sensor airborne data. The use of Maximum Likelihood and of the feature space including ADS40, LiDAR derived normalized digital surface, texture layers, and 24 MIVIS bands represents the scheme that maximizes the classification accuracy on the test set. The best classification provides high accuracy (92.57% overall accuracy) and demonstrates the potential of the proposed approach to define the optimized data fusion and to capture the high spatial variability of natural and human-dominated environments. Significant inter-class differences in the identification schemes are also found by indicat- ing possible sub-optimal solutions for landscape-driven mapping, such as mixed forest, floodplain, urban, and agricultural zones.


Quarterly Journal of Engineering Geology and Hydrogeology | 2014

A new appraisal of the Ancona landslide based on geotechnical investigations and stability modelling

Andrea Agostini; Veronica Tofani; Teresa Nolesini; Giovanni Gigli; Luca Tanteri; Ascanio Rosi; Stefano Cardellini; Nicola Casagli

On the night of 13 December 1982, Ancona experienced the catastrophic reactivation of an old and large landslide located along the coast to the west of the city. The outcomes of past and new geotechnical investigations and the data from the 30 year readings of the monitoring instruments have been integrated to redefine and update the actual location of the sliding surfaces. According to the new analysis, the landslide involves four main sliding surfaces with different extents and depths. The deepest surfaces converge at depth in a shear band and their toes are positioned near or beyond the coast. Numerical and analytical modelling of the landslide has been carried out using the newly derived sliding surface geometries. The numerical modelling has allowed a qualitative assessment of the deformation pattern, confirming the geometry of the sliding surfaces derived from the geotechnical investigations. The stability analyses have been performed applying the limit equilibrium method to quantify the instability conditions of the landside. The analyses have been carried out for five stratigraphic–geotechnical scenarios. All of these scenarios show a stability condition near the limit equilibrium.


International Journal of Applied Earth Observation and Geoinformation | 2016

Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy)

Ascanio Rosi; Veronica Tofani; Andrea Agostini; Luca Tanteri; Carlo Tacconi Stefanelli; Filippo Catani; Nicola Casagli

Abstract In this paper the mapping of subsidences in Tuscany (Italy) is presented. To achieve our goal satellite SAR data processed with persistent scatters interferometry (PSI) technique have been used. Several subsiding areas have been identified and three of them have been analyzed in detail and subsequently compared with literature work both to validate the results and to analyze the evolution of the identified subsidences. In general, this comparison confirmed the quality of the analyses and, furthermore, lead to the identification of an important ground uplift close to Prato city, an area that was historically affected by subsidence.


Landslides | 2018

The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution

Ascanio Rosi; Veronica Tofani; Luca Tanteri; C. Tacconi Stefanelli; Andrea Agostini; Filippo Catani; Nicola Casagli

In this paper, the updating of the landslide inventory of Tuscany region is presented. To achieve this goal, satellite SAR data processed with persistent scatter interferometry (PSI) technique have been used. The updating leads to a consistent reduction of unclassified landslides and to an increasing of active landslides. After the updating, we explored the characteristics of the new inventory, analysing landslide distribution and geomorphological features. Several maps have been elaborated, as sliding index or landslide density map; we also propose a density-area map to highlight areas with different landslide densities and sizes. A frequency-area analysis has been performed, highlighting a classical negative power-law distribution. We also explored landslide frequency for lithology, soil use and several morphological attributes (elevation, slope gradient, slope curvature), considering both all landslides and classified landslide types (flows, falls and slides).


Workshop on World Landslide Forum | 2017

Multitemporal UAV Survey for Mass Movement Detection and Monitoring

Luca Tanteri; Guglielmo Rossi; Veronica Tofani; Pietro Vannocci; Sandro Moretti; Nicola Casagli

In the last decade, the combination of rapid development of low cost and small Unmanned Aerial Vehicles (UAVs), improved battery technology and conventional sensors (Optical and LiDAR) in terms of cost and dimensions, led to new opportunities in environmental remote-sensing and 3D surface modelling. A long term monitoring campaign was performed in Ricasoli village, in the Upper Arno river Valley (Tuscany, Italy), to understand the possibility of this rising technology to characterize and to monitor landslides. The RGB and multispectral imageries were analyzed and combined using SfM (Structure from Motion) software, in order to obtain high resolution orthomosaics, point clouds and 3D digital terrain models (DTM). The comparative analysis of the obtained DTMs allowed a very accurate reconstruction and mapping of the detected landslides. The collected data also allowed to precisely detect some slope portions prone to failure and to evaluate the area and volume of the involved masses as well as displacement rates.


Workshop on World Landslide Forum | 2017

H/V Technique for the rapid detection of landslide slip surface(s): assessment of the optimized measurements spatial distribution

Veronica Pazzi; Luca Tanteri; Gabriele Bicocchi; Andrea Caselli; Michele D’Ambrosio; Riccardo Fanti

The investigation of landslides and slope deformation processes may require the integration of a wide range of data types, collected using different approaches, such as geomorphological, geotechnical and geophysical surveys. Among this latter category, seismic noise method can be used to detect and better understand the geometry of landslide slip surfaces. Indeed, a slip surface may generate evident contrasts in shear wave velocity due to changes in seismic impedance, generated by the different seismic velocity and density of materials at landslide boundaries. The H/V or Nakamura method allows to have a punctual information about the depth of the main impedance contrasts, thus, by performing a spatial interpolation of an adequate number of punctual depth measures, is possible to reliably estimate the depth and geometry of the slip surfaces with good accuracy. This study is focused on the relation between the number of the employed single-station seismic noise measurements and the goodness of the resulting, inferred, slip surface(s) for landslides. The final aim is to detect, if it exists, a threshold in the number of measurements beyond which the information obtained is redundant, since the variations in terms of morphology observed in the reconstructed impedance contrast surfaces become negligible. The proposed approach was validated at Castagnola Landslide (Liguria, Italy), where direct measures of the subsoil stratigraphy were available, then applied to another case study, i.e., the Roccalbegna Landslide (Tuscany, Italy), where no direct measurements, apart from those of the shallow layer geotechnical properties, were available. The experiments carried out are a proof-of-concept of the opportunities that this approach can offer.


Landslides | 2018

Multitemporal UAV surveys for landslide mapping and characterization

Guglielmo Rossi; Luca Tanteri; Veronica Tofani; Pietro Vannocci; Sandro Moretti; Nicola Casagli

This paper presents the preliminary results of the IPL project 196 “Development and applications of a multi-sensor drone for geohazards monitoring and mapping.” The objective of the project is to test the applicability of a multi-sensor drone for the mapping and monitoring of different types of geohazards. The Department of Earth Sciences of the University of Florence has developed a new type of drone airframe. Several survey campaigns were performed in the village of Ricasoli, in the Upper Arno river Valley (Tuscany, Italy) with the drone equipped with an optical camera to understand the possibility of this rising technology to map and characterize landslides. The aerial images were combined and analyzed using Structure-from-Motion (SfM) software. The collected data allowed an accurate reconstruction and mapping of the detected landslides. Comparative analysis of the obtained DTMs also permitted the detection of some slope portions being prone to failure and to evaluate the area and volume of the involved mass.

Collaboration


Dive into the Luca Tanteri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge