Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Turella is active.

Publication


Featured researches published by Luca Turella.


Experimental Brain Research | 2008

An object for an action, the same object for other actions: effects on hand shaping.

Caterina Ansuini; Livia Giosa; Luca Turella; Gianmarco Altoè; Umberto Castiello

Objects can be grasped in several ways due to their physical properties, the context surrounding the object, and the goal of the grasping agent. The aim of the present study was to investigate whether the prior-to-contact grasping kinematics of the same object vary as a result of different goals of the person grasping it. Subjects were requested to reach toward and grasp a bottle filled with water, and then complete one of the following tasks: (1) Grasp it without performing any subsequent action; (2) Lift and throw it; (3) Pour the water into a container; (4) Place it accurately on a target area; (5) Pass it to another person. We measured the angular excursions at both metacarpal-phalangeal (mcp) and proximal interphalangeal (pip) joints of all digits, and abduction angles of adjacent digit pairs by means of resistive sensors embedded in a glove. The results showed that the presence and the nature of the task to be performed following grasping affect the positioning of the fingers during the reaching phase. We contend that a one-to-one association between a sensory stimulus and a motor response does not capture all the aspects involved in grasping. The theoretical approach within which we frame our discussion considers internal models of anticipatory control which may provide a suitable explanation of our results.


Journal of Cognitive Neuroscience | 2006

When Gaze Turns into Grasp

Andrea C. Pierno; Cristina Becchio; Matthew B. Wall; Andrew T. Smith; Luca Turella; Umberto Castiello

Previous research has provided evidence for a neural system underlying the observation of another persons hand actions. Is the neural system involved in this capacity also important in inferring another persons motor intentions toward an object from their eye gaze? In real-life situations, humans use eye movements to catch and direct the attention of others, often without any accompanying hand movements or speech. In an event-related functional magnetic resonance imaging study, subjects observed videos showing a human model either grasping a target object (grasping condition) or simply gazing (gaze condition) at the same object. These two conditions were contrasted with each other and against a control condition in which the human model was standing behind the object without performing any gazing or grasping action. The results revealed activations within the dorsal premotor cortex, the inferior frontal gyrus, the inferior parietal lobule, and the superior temporal sulcus in both grasping and gaze conditions. These findings suggest that signaling the presence of an object through gaze elicits in an observer a similar neural response to that elicited by the observation of a reach-to-grasp action performed on the same object.


Cerebral Cortex | 2009

Neurofunctional Modulation of Brain Regions by the Observation of Pointing and Grasping Actions

Andrea C. Pierno; Federico Tubaldi; Luca Turella; Paola Grossi; Luigi Barachino; Paolo Gallo; Umberto Castiello

Previous neuroimaging research on healthy humans has provided evidence for a neural system underlying the observation of another persons hand actions. However, whether the neural processes involved in this capacity are activated by the observation of other transitive hand actions such as pointing remains unknown. Therefore, using functional magnetic resonance imaging we investigated the neural mechanisms underlying the observation of static images representing the hand of a human model pointing to an object (pointing condition), grasping an object (grasping condition), or resting in proximity of an object (control condition). The results indicated that activity within portions of the lateral occipitotemporal and the somatosensory cortices modulates according to the type of observed transitive actions. Specifically, these regions were more activated for the grasping than for the pointing condition. In contrast, the premotor cortex, a neural marker of action observation, did not show any differential activity when contrasting the considered experimental conditions. Our findings may provide novel insights regarding a possible role of extrastriate and somatosensory brain areas for the perception of distinct types of human hand-object interactions.


Frontiers in Human Neuroscience | 2014

Neural correlates of grasping

Luca Turella; Angelika Lingnau

Prehension, the capacity to reach and grasp objects, comprises two main components: reaching, i.e., moving the hand towards an object, and grasping, i.e., shaping the hand with respect to its properties. Knowledge of this topic has gained a huge advance in recent years, dramatically changing our view on how prehension is represented within the dorsal stream. While our understanding of the various nodes coding the grasp component is rapidly progressing, little is known of the integration between grasping and reaching. With this Mini Review we aim to provide an up-to-date overview of the recent developments on the coding of prehension. We will start with a description of the regions coding various aspects of grasping in humans and monkeys, delineating where it might be integrated with reaching. To gain insights into the causal role of these nodes in the coding of prehension, we will link this functional description to lesion studies. Finally, we will discuss future directions that might be promising to unveil new insights on the coding of prehension movements.


Social Neuroscience | 2008

Observing social interactions : The effect of gaze

Andrea C. Pierno; Cristina Becchio; Luca Turella; Federico Tubaldi; Umberto Castiello

Abstract Our social abilities depend on specialized brain systems that allow us to perform crucial operations such as interpreting the actions of others. This functional magnetic resonance imaging (fMRI) study investigated whether human brain activity evoked by the observation of social interactions is modulated by gaze. During scanning participants observed social or individual actions performed by agents whose gaze could be either available or masked. Results demonstrated that the observation of social interactions evoked activity within a dorsal sector of the medial prefrontal cortex (MPFC), an area classically involved in social cognition. Importantly, activity within this area was modulated by whether the gaze of the agents performing the observed action was or was not available. The implications of these findings for a role played by the dorsal medial prefrontal cortex (dMPFC) in terms of inferential processes concerned with social interactions are considered.


Experimental Brain Research | 2007

Distractor objects affect fingers’ angular distances but not fingers’ shaping during grasping

Caterina Ansuini; Veronica Tognin; Luca Turella; Umberto Castiello

The aim of the present study was to determine whether and how hand shaping was affected by the presence of a distractor object adjacent to the to-be-grasped object. Twenty subjects were requested to reach towards and grasp a ‘convex’ or a ‘concave’ object in the presence or absence of a distractor object either of the same or different shape than the target object. Flexion/extension at the metacarpal-phalangeal (MCP) and proximal interphalangeal joints of all digits, and abduction angle between digits were measured by resistive sensors embedded in a glove. The results indicate robust interference effects at the level of reach duration and the extent of fingers’ abduction angles together with changes at the level of a single joint for the thumb. No distractor effects on individual fingers’ joints except for the MCP of the middle and little fingers were found. These findings suggest that the presence of distractor object affects hand shaping in terms of fingers’ abduction angles, but not at the level of ‘shape dependent’ fingers’ angular excursions. Furthermore, they support the importance of the thumb for the guidance of selective reach-to-grasp movements. We discuss these results in the context of current theories proposed to explain the object selection processes underlying the control of hand action.


NeuroImage | 2016

Beta band modulations underlie action representations for movement planning.

Luca Turella; Raffaele Tucciarelli; Nikolaas N. Oosterhof; Raffaella I. Rumiati; Angelika Lingnau

To be able to interact with our environment, we need to transform incoming sensory information into goal-directed motor outputs. Whereas our ability to plan an appropriate movement based on sensory information appears effortless and simple, the underlying brain dynamics are still largely unknown. Here we used magnetoencephalography (MEG) to investigate this issue by recording brain activity during the planning of non-visually guided reaching and grasping actions, performed with either the left or right hand. Adopting a combination of univariate and multivariate analyses, we revealed specific patterns of beta power modulations underlying varying levels of neural representations during movement planning. (1) Effector-specific modulations were evident as a decrease in power in the beta band. Within both hemispheres, this decrease was stronger while planning a movement with the contralateral hand. (2) The comparison of planned grasping and reaching led to a relative increase in power in the beta band. These power changes were localized within temporal, premotor and posterior parietal cortices. Action-related modulations overlapped with effector-related beta power changes within widespread frontal and parietal regions, suggesting the possible integration of these two types of neural representations. (3) Multivariate analyses of action-specific power changes revealed that part of this broadband beta modulation also contributed to the encoding of an effector-independent neural representation of a planned action within fronto-parietal and temporal regions. Our results suggest that beta band power modulations play a central role in movement planning, within both the dorsal and ventral stream, by coding and integrating different levels of neural representations, ranging from the simple representation of the to-be-moved effector up to an abstract, effector-independent representation of the upcoming action.


Frontiers in Human Neuroscience | 2013

Expertise in action observation: recent neuroimaging findings and future perspectives

Luca Turella; Moritz F. Wurm; Raffaele Tucciarelli; Angelika Lingnau

In everyday life, we continuously interact with other individuals. Understanding actions of other people, i.e., the ability to distinguish between different actions, such as passing over vs. threatening someone with a knife, has been crucial for the survival of our species and is a fundamental capability for our social interactions. Neuroimaging studies investigated the neural substrates subtending action perception using a variety of techniques, ranging from univariate analysis of fMRI data (Brass et al., 2007; Gazzola et al., 2007; De Lange et al., 2008; Gazzola and Keysers, 2009; Turella et al., 2009a, 2012; Wurm et al., 2011; Wurm and Schubotz, 2012; Wurm et al., 2012; Lingnau and Petris, 2013), to fMRI repetition suppression (Dinstein et al., 2007; Chong et al., 2008; Lingnau et al., 2009; Kilner et al., 2009) and multivoxel pattern analysis (MVPA; Dinstein et al., 2008a; Oosterhof et al., 2010, 2012). These studies reported the consistent recruitment of a number of regions, generally assumed as pertaining to two different networks, typically referred to as the action observation network (AON) and the mentalizing system (Figure ​(Figure1A).1A). Both networks have been advocated to be involved in action understanding (Brass et al., 2007; De Lange et al., 2008; Van Overwalle, 2009; Van Overwalle and Baetens, 2009; Wurm et al., 2011), but their precise roles and their causal involvement are strongly debated (Dinstein et al., 2008b; Mahon and Caramazza, 2008; Hickok, 2009; Turella et al., 2009b; Rizzolatti and Sinigaglia, 2010). Figure 1 (A) Schematic representation of the core AON, extended AON and mentalizing system. Three-dimensional representation of lateral and medial brain surface. The regions assigned to the “core” AON, “extended” AON and the “mentalizing” ... In homology with monkey neurophysiological studies, three regions have been proposed to form the human AON (Rizzolatti and Craighero, 2004; Rizzolatti and Sinigaglia, 2010; see Figure ​Figure1A).1A). This “core” AON was defined as comprising (i) the ventral premotor cortex (PMV) together with the posterior part of the inferior frontal gyrus (pIFG), (ii) the anterior inferior parietal lobule (aIPL) and (iii) the superior temporal sulcus (STS). Human neuroimaging studies suggested the recruitment of several additional areas that were incorporated in an “extended” version of the AON (Gazzola and Keysers, 2009; Caspers et al., 2010; see Figure ​Figure1A1A). The mentalizing system has been identified in human neuroimaging studies investigating social cognition tasks, such as intention and beliefs attribution about the self or others, while observing action-related stimuli (Van Overwalle, 2009). The regions consistently assigned to this network are the medial prefrontal cortex (mPFC) and the temporo-parietal junction (TPJ) (Figure ​(Figure1A),1A), and less often also the precuneus and the posterior cingulate cortex (Amodio and Frith, 2006; Brass et al., 2007; De Lange et al., 2008; Van Overwalle, 2009; Van Overwalle and Baetens, 2009). The first description of the involvement of sensorimotor regions during action perception started with the discovery of mirror neurons in the ventral premotor cortex in macaque monkeys (Di Pellegrino et al., 1992). These visuomotor neurons responded both while the monkey executed or observed similar actions and were later described also within the monkey inferior parietal lobule (Fogassi et al., 2005). Note that both regions also contain neurons with motor-only and visual-only properties (Gallese et al., 1996, 2002). Following their discovery, motor theories of action understanding proposed that mirror neurons might provide the basis for a matching mechanism between what we observe and what we can perform allowing the understanding of observed actions in motoric terms (Rizzolatti et al., 2001). Even if this hypothesis is strongly debated (Jacob and Jeannerod, 2005; Mahon and Caramazza, 2008; Hickok, 2009, 2013), a similar homologue mechanism has been proposed to exist in the human AON (Rizzolatti et al., 2001; Rizzolatti and Craighero, 2004; Rizzolatti and Sinigaglia, 2010). In this brief overview, we will first describe previous fMRI studies that investigated how motor experience affects activation within the AON, and to which degree these studies allow drawing conclusions about the role of this network in action understanding. As the majority of the studies investigated only the AON and given the limited scope of this Opinion, we will focus on this network, even if our considerations might also hold true for other areas. We will then try to delineate how future studies might exploit motor expertise as a tool for gaining insights into the neural basis of action understanding.


International Journal of Neural Systems | 2017

Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro-Electrocorticography.

Irene Rembado; Elisa Castagnola; Luca Turella; Tamara Ius; Riccardo Budai; Alberto Ansaldo; Gian Nicola Angotzi; Francesco Debertoldi; Davide Ricci; Miran Skrap; Luciano Fadiga

High-density surface microelectrodes for electrocorticography (ECoG) have become more common in recent years for recording electrical signals from the cortex. With an acceptable invasiveness/signal fidelity trade-off and high spatial resolution, micro-ECoG is a promising tool to resolve fine task-related spatial-temporal dynamics. However, volume conduction - not a negligible phenomenon - is likely to frustrate efforts to obtain reliable and resolved signals from a sub-millimeter electrode array. To address this issue, we performed an independent component analysis (ICA) on micro-ECoG recordings of somatosensory-evoked potentials (SEPs) elicited by median nerve stimulation in three human patients undergoing brain surgery for tumor resection. Using well-described cortical responses in SEPs, we were able to validate our results showing that the array could segregate different functional units possessing unique, highly localized spatial distributions. The representation of signals through the root-mean-square (rms) maps and the signal-to-noise ratio (SNR) analysis emphasizes the advantages of adopting a source analysis approach on micro-ECoG recordings in order to obtain a clear picture of cortical activity. The implications are twofold: while on one side ICA may be used as a spatial-temporal filter extracting micro-signal components relevant to tasks for brain-computer interface (BCI) applications, it could also be adopted to accurately identify the sites of nonfunctional regions for clinical purposes.


BioMed Research International | 2015

Second Surgery in Insular Low-Grade Gliomas

Tamara Ius; Giada Pauletto; Daniela Cesselli; Miriam Isola; Luca Turella; Riccardo Budai; Giovanna DeMaglio; Roberto Eleopra; Luciano Fadiga; Christian Lettieri; Stefano Pizzolitto; Carlo Alberto Beltrami; Miran Skrap

Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR) are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs) that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs). Univariate analysis showed that TR is influenced by the following: extent of resection (EOR) (P < 0.002), ΔVT2T1 value (P < 0.001), histological diagnosis of oligodendroglioma (P = 0.017), and mutation of IDH1 (P = 0.022). The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P < 0.001). Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.

Collaboration


Dive into the Luca Turella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Becchio

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge