Lucas B. Harrington
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucas B. Harrington.
Nature | 2016
David Burstein; Lucas B. Harrington; Steven C. Strutt; Alexander J. Probst; Karthik Anantharaman; Brian C. Thomas; Jennifer A. Doudna; Jillian F. Banfield
CRISPR–Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR–Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR–Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR–Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR–Cas system. In bacteria, we discovered two previously unknown systems, CRISPR–CasX and CRISPR–CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.
Nature | 2017
Janice S. Chen; Yavuz S. Dagdas; Benjamin P. Kleinstiver; Moira M. Welch; Alexander A. Sousa; Lucas B. Harrington; Samuel H. Sternberg; J. Keith Joung; Ahmet Yildiz; Jennifer A. Doudna
The RNA-guided CRISPR–Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity are unknown. Here, using single-molecule Förster resonance energy transfer experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target complementarity and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we design a new hyper-accurate Cas9 variant (HypaCas9) that demonstrates high genome-wide specificity without compromising on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing.
Nature | 2015
James K. Nuñez; Lucas B. Harrington; Philip J. Kranzusch; Alan Engelman; Jennifer A. Doudna
Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1–Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.
Science | 2018
Janice S. Chen; Enbo Ma; Lucas B. Harrington; Maria Da Costa; Xinran Tian; Joel M. Palefsky; Jennifer A. Doudna
Taking CRISPR technology further CRISPR techniques are allowing the development of technologies for nucleic acid detection (see the Perspective by Chertow). Taking advantages of the distinctive enzymatic properties of CRISPR enzymes, Gootenberg et al. developed an improved nucleic acid detection technology for multiplexed quantitative and highly sensitive detection, combined with lateral flow for visual readout. Myhrvold et al. added a sample preparation protocol to create a field-deployable viral diagnostic platform for rapid detection of specific strains of pathogens in clinical samples. Cas12a (also known as Cpf1), a type V CRISPR protein, cleaves double-stranded DNA and has been adapted for genome editing. Chen et al. discovered that Cas12a also processes single-stranded DNA threading activity. A technology platform based on this activity detected human papillomavirus in patient samples with high sensitivity. Science, this issue p. 439, p. 444, p. 436; see also p. 381 Single-stranded DNase activity upon guide RNA–dependent DNA binding can be harnessed for rapid and specific nucleic acid detection. CRISPR-Cas12a (Cpf1) proteins are RNA-guided enzymes that bind and cut DNA as components of bacterial adaptive immune systems. Like CRISPR-Cas9, Cas12a has been harnessed for genome editing on the basis of its ability to generate targeted, double-stranded DNA breaks. Here we show that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA (ssDNA) cleavage activity by Cas12a that completely degrades ssDNA molecules. We find that target-activated, nonspecific single-stranded deoxyribonuclease (ssDNase) cleavage is also a property of other type V CRISPR-Cas12 enzymes. By combining Cas12a ssDNase activation with isothermal amplification, we create a method termed DNA endonuclease-targeted CRISPR trans reporter (DETECTR), which achieves attomolar sensitivity for DNA detection. DETECTR enables rapid and specific detection of human papillomavirus in patient samples, thereby providing a simple platform for molecular diagnostics.
ACS Chemical Biology | 2016
James K. Nuñez; Lucas B. Harrington; Jennifer A. Doudna
The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.
Molecular Cell | 2015
Enbo Ma; Lucas B. Harrington; O'Connell Mr; Kaihong Zhou; Jennifer A. Doudna
Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9-guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family.
Cell | 2017
Lucas B. Harrington; Kevin W. Doxzen; Enbo Ma; Jun-Jie Liu; Gavin J. Knott; Alireza Edraki; Bianca Garcia; Nadia Amrani; Janice S. Chen; Joshua C. Cofsky; Philip J. Kranzusch; Erik J. Sontheimer; Alan R. Davidson; Karen L. Maxwell; Jennifer A. Doudna
CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.
bioRxiv | 2017
Janice S. Chen; Enbo Ma; Lucas B. Harrington; Xinran Tian; Jennifer A. Doudna
CRISPR-Cas12a (Cpf1) proteins are RNA-guided DNA targeting enzymes that bind and cut DNA as components of bacterial adaptive immune systems. Like CRISPR-Cas9, Cas12a can be used as a powerful genome editing tool based on its ability to induce genetic changes in cells at sites of double-stranded DNA (dsDNA) cuts. Here we show that RNA-guided DNA binding unleashes robust, non-specific single-stranded DNA (ssDNA) cleavage activity in Cas12a sufficient to completely degrade both linear and circular ssDNA molecules within minutes. This activity, catalyzed by the same active site responsible for site-specific dsDNA cutting, indiscriminately shreds ssDNA with rapid multiple-turnover cleavage kinetics. Activation of ssDNA cutting requires faithful recognition of a DNA target sequence matching the 20-nucleotide guide RNA sequence with specificity sufficient to distinguish between closely related viral serotypes. We find that target-dependent ssDNA degradation, not observed for CRISPR-Cas9 enzymes, is a fundamental property of type V CRISPR-Cas12 proteins, revealing a fascinating parallel with the RNA-triggered general RNase activity of the type VI CRISPR-Cas13 enzymes. One Sentence Summary Cas12a (Cpf1) and related type V CRISPR interference proteins possess non-specific, single-stranded DNase activity upon activation by guide RNA-dependent DNA binding.
Science | 2018
Lucas B. Harrington; David Burstein; Janice S. Chen; David Paez-Espino; Enbo Ma; Isaac P. Witte; Joshua C. Cofsky; Nikos C. Kyrpides; Jillian F. Banfield; Jennifer A. Doudna
A programmable type of CRISPR system CRISPR-Cas9 systems have been causing a revolution in biology. Harrington et al. describe the discovery and technological implementation of an additional type of CRISPR system based on an extracompact effector protein, Cas14. Metagenomics data, particularly from uncultivated samples, uncovered the CRISPR-Cas14 systems containing all the components necessary for adaptive immunity in prokaryotes. At half the size of class 2 CRISPR effectors, Cas14 appears to target single-stranded DNA without class 2 sequence restrictions. By leveraging this activity, a fast and high-fidelity nucleic acid detection system enabled detection of single-nucleotide polymorphisms. Science, this issue p. 839 Identification, characterization, and technological implementation of additional archaea-derived CRISPR-Cas14 systems are described. CRISPR-Cas systems provide microbes with adaptive immunity to infectious nucleic acids and are widely employed as genome editing tools. These tools use RNA-guided Cas proteins whose large size (950 to 1400 amino acids) has been considered essential to their specific DNA- or RNA-targeting activities. Here we present a set of CRISPR-Cas systems from uncultivated archaea that contain Cas14, a family of exceptionally compact RNA-guided nucleases (400 to 700 amino acids). Despite their small size, Cas14 proteins are capable of targeted single-stranded DNA (ssDNA) cleavage without restrictive sequence requirements. Moreover, target recognition by Cas14 triggers nonspecific cutting of ssDNA molecules, an activity that enables high-fidelity single-nucleotide polymorphism genotyping (Cas14-DETECTR). Metagenomic data show that multiple CRISPR-Cas14 systems evolved independently and suggest a potential evolutionary origin of single-effector CRISPR-based adaptive immunity.
Molecular Cell | 2016
James K. Nuñez; Lawrence Bai; Lucas B. Harrington; Tracey L. Hinder; Jennifer A. Doudna