Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucas C. R. Silva is active.

Publication


Featured researches published by Lucas C. R. Silva.


Journal of Agricultural and Food Chemistry | 2013

Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks

Fungai N.D. Mukome; Xiaoming Zhang; Lucas C. R. Silva; Johan Six; Sanjai J. Parikh

Studies have shown that pyrolysis method and temperature are the key factors influencing biochar chemical and physical properties; however, information on the nature of biochar feedstocks is more accessible to consumers, making feedstock a better measure for selecting biochars. This study characterizes physical and chemical properties of commercially available biochars and investigates trends in biochar properties related to feedstock material to develop guidelines for biochar use. Twelve biochars were analyzed for physical and chemical properties. Compiled data from this study and from the literature (n = 85) were used to investigate trends in biochar characteristics related to feedstock. Analysis of compiled data reveals that despite clear differences in biochar properties from feedstocks of algae, grass, manure, nutshells, pomace, and wood (hard- and softwoods), characteristic generalizations can be made. Feedstock was a better predictor of biochar ash content and C/N ratio, but surface area was also temperature dependent for wood-derived biochar. Significant differences in ash content (grass and manure > wood) and C/N ratio (softwoods > grass and manure) enabled the first presentation of guidelines for biochar use based on feedstock material.


PLOS ONE | 2010

Recent Widespread Tree Growth Decline Despite Increasing Atmospheric CO2

Lucas C. R. Silva; Madhur Anand; Mark Leithead

Background The synergetic effects of recent rising atmospheric CO2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Methodology/Principal Findings Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9° latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment – BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Conclusions Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.


Oecologia | 2010

Northward migrating trees establish in treefall gaps at the northern limit of the temperate–boreal ecotone, Ontario, Canada

Mark Leithead; Madhur Anand; Lucas C. R. Silva

Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes–St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.


PLOS ONE | 2013

Explaining Global Increases in Water Use Efficiency: Why Have We Overestimated Responses to Rising Atmospheric CO2 in Natural Forest Ecosystems?

Lucas C. R. Silva; William R. Horwath

Background The analysis of tree-ring carbon isotope composition (δ13C) has been widely used to estimate spatio-temporal variations in intrinsic water use efficiency (iWUE) of tree species. Numerous studies have reported widespread increases in iWUE coinciding with rising atmospheric CO2 over the past century. While this could represent a coherent global response, the fact that increases of similar magnitude were observed across biomes with no apparent effect on tree growth raises the question of whether iWUE calculations reflect actual physiological responses to elevated CO2 levels. Methodology/Results Here we use Monte Carlo simulations to test if an artifact of calculation could explain observed increases in iWUE. We show that highly significant positive relationships between iWUE and CO2 occur even when simulated data (randomized δ13C values spanning the observed range) are used in place of actual tree-ring δ13C measurements. From simulated data sets we calculated non-physiological changes in iWUE from 1900 to present and across a 4000 m altitudinal range. This generated results strikingly similar to those reported in recent studies encompassing 22 species from tropical, subtropical, temperate, boreal and mediterranean ecosystems. Only 6 of 49 surveyed case studies showed increases in iWUE significantly higher than predicted from random values. Conclusions/Significance Our results reveal that increases in iWUE estimated from tree-ring δ13C occur independently of changes in 13C discrimination that characterize physiological responses to elevated CO2. Due to a correlation with CO2 concentration, which is used as an independent factor in the iWUE calculation, any tree-ring δ13C data set would inevitably generate increasing iWUE over time. Therefore, although consistent, previously reported trends in iWUE do not necessarily reflect a coherent global response to rising atmospheric CO2. We discuss the significance of these findings and suggest ways to distinguish real from artificial responses in future studies.


Plant and Soil | 2010

Deciphering earth mound origins in central Brazil

Lucas C. R. Silva; Gabriel Damasco Vale; Ricardo Flores Haidar; Leonel da Silveira Lobo Sternberg

Mound fields are a common landscape throughout the world and much of the evidence for their origin has been of a circumstantial nature. It has been hypothesized that earth mounds emerge over grasslands by termite activity; alternatively, they might be formed after erosion. We tested whether a mound field in central Brazil was generated by termite activity or erosion. We used soil organic matter isotopic composition, soil chemical, physical and floristic composition to determine the origin of a mound field. If the mounds emerged by termite activity in an established grassland the soil organic matter below the mound should have the isotopic signature of C4 dominated grassland, which contrasts with savanna C3 + C4 signature. Additionally, soil traits should resemble those of the grassland. All markers indicate that the mounds were formed by erosion. The soil isotopic composition, chemical traits and texture below the mound resembled those of the savanna and not those of the grassland. Moreover, most of the species present in the mound were typical of savanna. Concrete evidence is provided that mound fields in the studied area were produced by erosion of a savanna ecosystem and not termite activity. The use of the techniques applied here would improve the assessments of whether analogous landscapes are of a biogenic nature or not.


Ecological Applications | 2013

Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion

Lucas C. R. Silva; Rodrigo Studart Corrêa; Timothy A. Doane; Engil Isadora Pujol Pereira; William R. Horwath

Opencast mining causes severe impacts on natural environments, often resulting in permanent damage to soils and vegetation. In the present study we use a 14-year restoration chronosequence to investigate how resource input and spontaneous plant colonization promote the revegetation and reconstruction of mined soils in central Brazil. Using a multi-proxy approach, combining vegetation surveys with the analysis of plant and soil isotopic abundances (delta13C and delta15N) and chemical and physical fractionation of organic matter in soil profiles, we show that: (1) after several decades without vegetation cover, the input of nutrient-rich biosolids into exposed regoliths prompted the establishment of a diverse plant community (> 30 species); (2) the synergistic effect of resource input and plant colonization yielded unprecedented increases in soil carbon, accumulating as chemically stable compounds in occluded physical fractions and reaching much higher levels than observed in undisturbed ecosystems; and (3) invasive grasses progressively excluded native species, limiting nutrient availability, but contributing more than 65% of the total accumulated soil organic carbon. These results show that soil-plant feedbacks regulate the amount of available resources, determining successional trajectories and alternative stable equilibria in degraded areas undergoing restoration. External inputs promote plant colonization, soil formation, and carbon sequestration, at the cost of excluding native species. The introduction of native woody species would suppress invasive grasses and increase nutrient availability, bringing the system closer to its original state. However, it is difficult to predict whether soil carbon levels could be maintained without the exotic grass cover. We discuss theoretical and practical implications of these findings, describing how the combination of resource manipulation and management of invasive species could be used to optimize restoration strategies, counteracting soil degradation while maintaining species diversity.


Trees-structure and Function | 2013

Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna

Davi Rodrigo Rossatto; William A. Hoffmann; Lucas C. R. Silva; Mundayatan Haridasan; Leonel da Silveira Lobo Sternberg; Augusto C. Franco

The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (Aarea) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and Aarea, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.


PLOS ONE | 2013

Iron: the forgotten driver of nitrous oxide production in agricultural soil.

Xia Zhu; Lucas C. R. Silva; Timothy A. Doane; William R. Horwath

In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O) from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisited iron by exploring its importance alongside other soil properties commonly believed to control N2O production in agricultural systems. A set of soils from Californias main agricultural regions was used to observe N2O emission under conditions representative of typical field scenarios. Results of multivariate analysis showed that in five of the twelve different conditions studied, iron ranked higher than any other intrinsic soil property in explaining observed emissions across soils. Upcoming studies stand to gain valuable information by considering iron among the drivers of N2O emission, expanding the current framework to include coupling between biotic and abiotic reactions.


Plant Cell and Environment | 2016

Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

J. Mason Earles; Or Sperling; Lucas C. R. Silva; Andrew J. McElrone; Craig R. Brodersen; Malcolm P. North; Maciej A. Zwieniecki

Coastal redwood (Sequoia sempervirens), the worlds tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water entered the xylem via bark and reduced tracheid embolization. Moreover, prolonged bark wetting (16 h) partially restored xylem hydraulic conductivity in isolated branch segments and whole branches. Partial hydraulic recovery coincided with an increase in branch water potential from about -5.5 ± 0.4 to -4.2 ± 0.3 MPa, suggesting localized recovery and possibly hydraulic isolation. As bark water uptake rate correlated with xylem osmotic potential (R(2)  = 0.88), we suspect a symplastic role in transferring water from bark to xylem. Using historical weather data from typical redwood habitat, we estimated that bark and leaves are wet more than 1000 h per year on average, with over 30 events being sufficiently long (>24 h) to allow for bark-assisted hydraulic recovery. The capacity to uptake biologically meaningful volumes of water via bark and leaves for localized hydraulic recovery throughout the crown during rain/fog events might be physiologically advantageous, allowing for relatively constant transpiration.


Journal of Ecology | 2014

Carbon isotopic signatures of soil organic matter correlate with leaf area index across woody biomes

Brenton Ladd; Pablo Luis Peri; David A. Pepper; Lucas C. R. Silva; Douglas Sheil; Stephen P. Bonser; Shawn W. Laffan; Wulf Amelung; Alf Ekblad; Peter Eliasson; Héctor A Bahamonde; Sandra Duarte-Guardia; Michael I. Bird

Leaf area index (LAI), a measure of canopy density, is a key variable for modelling and understanding primary productivity, and also water use and energy exchange in forest ecosystems. However, LAI varies considerably with phenology and disturbance patterns, so alternative approaches to quantifying stand-level processes should be considered. The carbon isotope composition of soil organic matter (C-13(SOM)) provides a time-integrated, productivity-weighted measure of physiological and stand-level processes, reflecting biomass deposition from seasonal to decadal time scales. Our primary aim was to explore how well LAI correlates with C-13(SOM) across biomes. Using a global data set spanning large environmental gradients in tropical, temperate and boreal forest and woodland, we assess the strength of the correlation between LAI and C-13(SOM); we also assess climatic variables derived from the WorldClim database. We found that LAI was strongly correlated with C-13(SOM), but was also correlated with Mean Temperature of the Wettest Quarter, Mean Precipitation of Warmest Quarter and Annual Solar Radiation across and within biomes.Synthesis. Our results demonstrate that C-13(SOM) values can provide spatially explicit estimates of leaf area index (LAI) and could therefore serve as a surrogate for productivity and water use. While C-13(SOM) has traditionally been used to reconstruct the relative abundance of C-3 versus C-4 species, the results of this study demonstrate that within stable C-3- or C-4-dominated biomes, C-13(SOM) can provide additional insights. The fact that LAI is strongly correlated to C-13(SOM) may allow for a more nuanced interpretation of ecosystem properties of palaeoecosystems based on palaeosol C-13 values.

Collaboration


Dive into the Lucas C. R. Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brenton Ladd

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Shawn W. Laffan

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge