Lucas C. Rodriguez
University of Texas at Dallas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucas C. Rodriguez.
ACS Applied Materials & Interfaces | 2014
Izabelle M. Gindri; Clarissa P. Frizzo; Caroline R. Bender; Aniele Z. Tier; Marcos A. P. Martins; Marcos A. Villetti; Giovanna Machado; Lucas C. Rodriguez; Danieli C. Rodrigues
Coated TiO2 nanoparticles by dicationic imidazolium-based ionic liquids (ILs) were prepared and studied by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). Three ILs with different hydrophobicity degrees and structural characteristics were used (IL-1, IL-2, and IL-3). The interaction between IL molecules and the TiO2 surface was analyzed in both solid state and in solution. The physical and chemical properties of coated nanoparticles (TiO2 + IL-1, TiO2 + IL-2, and TiO2 + IL-3) were compared to pure materials (TiO2, IL-1, IL-2, and IL-3) in order to evaluate the interaction between both components. Thermal behavior, diffraction pattern, and morphologic characteristics were evaluated in the solid state. It was observed that all mixtures (TiO2 + IL) showed different behavior from that detected for pure substances, which is an evidence of film formation. DLS experiments were conducted to determine film thickness on the TiO2 surface comparing the size (hydrodynamic radius, Rh) of pure TiO2 with coated nanoparticles (TiO2 + IL). Results showed the thickness of the film increased with hydrophobicity of the IL compound. TEM images support this observation. Finally, X-ray diffraction patterns showed that, in coated samples, no structural changes in TiO2 diffraction peaks were observed, which is related to the maintenance of the crystalline structure. On the contrary, ILs showed different diffraction patterns, which confirms the hypothesis of interactions happening between IL and the TiO2 nanoparticles surface.
RSC Advances | 2014
Izabelle M. Gindri; Danyal A. Siddiqui; Pooja Bhardwaj; Lucas C. Rodriguez; Kelli L. Palmer; Clarissa P. Frizzo; Marcos A. P. Martins; Danieli C. Rodrigues
New dicationic imidazolium-based ionic liquids (ILs) were synthesized, characterized and tested in regards to cytotoxicity and antimicrobial activity. Insertion of a new cationic head and use of organic anions increased the biocompatibility of the ILs developed. IC50 (concentration necessary to inhibit 50% of enzymatic activity) values obtained were considerably higher than those described for monocationic ILs, which indicates an improvement in cytocompatibility. Antimicrobial activity against bacterial species of clinical relevance in wounds and the oral environment was tested. The results showed that ILs were effective in inhibiting bacterial growth even below the minimum inhibitory concentration (MIC). It was observed that structural features that confer higher hydrophobicity to ILs decreased both the IC50 and MIC simultaneously. However, it was possible to establish an equilibrium between those two effects, which gives the safe range of concentrations that ILs can be employed. The results demonstrated that the dicationic-imidazolium-based ILs synthesized may constitute a potent strategy for applications requiring non-toxic materials exhibiting antimicrobial activity.
International Journal of Oral & Maxillofacial Implants | 2015
Maria Burbano; Thomas G. Wilson; Pilar Valderrama; Jonathan Blansett; Chandur Wadhwani; Pankaj K. Choudhary; Lucas C. Rodriguez; Danieli C. Rodrigues
PURPOSE Peri-implantitis is a disease characterized by soft tissue inflammation and continued loss of supporting bone, which can result in implant failure. Peri-implantitis is a multifactorial disease, and one of its triggering factors may be the presence of excess cement in the soft tissues surrounding an implant. This descriptive study evaluated the composition of foreign particles from 36 human biopsy specimens with 19 specimens selected for analysis. The biopsy specimens were obtained from soft tissues affected by peri-implantitis around cement-retained implant crowns and compared with the elemental composition of commercial luting cement. MATERIALS AND METHODS Nineteen biopsy specimens were chosen for the comparison, and five test cements (TempBond, Telio, Premier Implant Cement, Intermediate Restorative Material, and Relyx) were analyzed using scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. This enabled the identification of the chemical composition of foreign particles embedded in the tissue specimens and the composition of the five cements. Statistical analysis was conducted using classification trees to pair the particles present in each specimen with the known cements. RESULTS The particles in each biopsy specimen could be associated with one of the commercial cements with a level of probability ranging between .79 and 1. TempBond particles were found in one biopsy specimen, Telio particles in seven, Premier Implant Cement particles in four, Relyx particles in four, and Intermediate Restorative Material particles in three. CONCLUSION Particles found in human soft tissue biopsy specimens around implants affected by peri-implant disease were associated with five commercially available dental cements.
Materials | 2014
Lucas C. Rodriguez; Jonathan Chari; Shant Aghyarian; Izabelle M. Gindri; Victor Kosmopoulos; Danieli C. Rodrigues
Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects.
Journal of Biomaterials Applications | 2014
Shant Aghyarian; Lucas C. Rodriguez; Jonathan Chari; Elizabeth Bentley; Victor Kosmopoulos; Isador H. Lieberman; Danieli C. Rodrigues
Calcium phosphate fillers have been shown to increase cement osteoconductivity, but have caused drawbacks in cement properties. Hydroxyapatite and Brushite were introduced in an acrylic two-solution cement at varying concentrations. Novel composite bone cements were developed and characterized using rheology, injectability, and mechanical tests. It was hypothesized that the ample swelling time allowed by the premixed two-solution cement would enable thorough dispersion of the additives in the solutions, resulting in no detrimental effects after polymerization. The addition of Hydroxyapatite and Brushite both caused an increase in cement viscosity; however, these cements exhibited high shear-thinning, which facilitated injection. In gel point studies, the composite cements showed no detectable change in gel point time compared to an all-acrylic control cement. Hydroxyapatite and Brushite composite cements were observed to have high mechanical strengths even at high loads of calcium phosphate fillers. These cements showed an average compressive strength of 85 MPa and flexural strength of 65 MPa. A calcium phosphate-containing cement exhibiting a combination of high viscosity, pseudoplasticity and high mechanical strength can provide the essential bioactivity factor for osseointegration without sacrificing load-bearing capability.
Journal of Bioactive and Compatible Polymers | 2015
Lucas C. Rodriguez; Kelli L. Palmer; Francisco Montagner; Danieli C. Rodrigues
The addition of calcium phosphate fillers or antimicrobials to bone cements seems to produce inferior materials. In this study, a two-solution bone cement composite was designed for high viscosity and high pseudoplasticity to improve injection and mitigate the risk of extravasation. By pre-mixing these cements, the fillers are incorporated into the matrix and should not detrimentally affect the performance properties. To expand the functionality of this cement system, the addition of bioactive and antimicrobial phases were explored. Brushite and chlorhexidine were used as calcium phosphate filler and the antimicrobial phase, respectively. By controlling the free radical quenching mechanism provided by the chlorhexidine molecule, it was possible to achieve high polymer conversion rates. This phenomenon led to cement strength retention while successfully preventing microbial proliferation in an environment exposed to the cement surface. Based on these results, two-solution cement composite prepared with high concentrations of brushite and chlorhexidine diacetate salt hydrate may provide an attractive bioactive and antimicrobial cement for load-bearing applications.
Journal of Prosthetic Dentistry | 2017
Lucas C. Rodriguez; Juliana N. Saba; Kwok Hung Chung; Chandur Wadhwani; Danieli C. Rodrigues
Statement of problem. Dental cements for cement‐retained restorations are often chosen based on clinician preference for the products material properties, mixing process, delivery mechanism, or viscosity. The composition of dental cement may play a significant role in the proliferation or inhibition of different bacterial strains associated with peri‐implant disease, and the effect of dental cements on host cellular proliferation may provide further insight into appropriate cement material selection. Purpose. The purpose of this in vitro study was to investigate the cellular host response of bone cells (osteoblasts) and soft tissue cells (gingival fibroblasts) to dental cements. Material and methods. Zinc oxide (eugenol and noneugenol), zinc phosphate, and acrylic resin cements were molded into pellets and directly applied to confluent preosteoblast (cell line MC3T3 E1) or gingival fibroblast cell cultures (cell line HGF) to determine cellular viability after exposure. Controls were defined as confluent cell cultures with no cement exposure. Direct contact cell culture testing was conducted following International Organization for Standardization 10993 methods, and all experiments were performed in triplicate. To compare either the MC3T3 E1 cell line, or the HGF cell line alone, a 1‐way ANOVA test with multiple comparisons was used (&agr;=.05). To compare the MC3T3 E1 cell line results and the HGF cell line results, a 2‐way ANOVA test with multiple comparisons was used (&agr;=.05). Results. The results of this study illustrated that while both bone and soft tissue cell lines were vulnerable to the dental cement test materials, the soft tissue cell line (human gingival fibroblasts) was more susceptible to reduced cellular viability after exposure. The HGF cell line was much more sensitive to cement exposure. Here, the acrylic resin, zinc oxide (eugenol), and zinc phosphate cements significantly reduced cellular viability after exposure with respect to HGF cells only. Conclusions. Within the limitation of this in vitro cellular study, the results indicated that cell response to various implant cements varied significantly, with osteoblast proliferation much less affected than gingival fibroblast cells. Furthermore, the zinc oxide noneugenol dental cement appeared to affect the cell lines significantly less than the other test cements.
Journal of Bio- and Tribo-Corrosion | 2017
Juliana N. Saba; Danyal A. Siddiqui; Lucas C. Rodriguez; Sathyanarayanan Sridhar; Danieli C. Rodrigues
Biocompatibility, strength, and corrosion resistance make titanium the material of choice for dental implants and abutment components. In cemented implant restorations, dental cement is used to provide retention of the crown to the abutment and to create access to the implant. Reported problems in the literature associated with dental cement cite inflammation, and in some cases peri-implantitis, due to its residual presence in subgingival tissues. It has been recently suggested that particular components of dental cement may play a role in promoting corrosion while in contact with titanium surfaces. The goal of this study was to understand the electrochemical behavior of commercially pure titanium (cpTi) in contact with various commercially available dental cements. Open-circuit potential, linear polarization resistance, and corrosion rates were measured for cpTi disks cemented with resin, eugenol, zinc phosphate, and bioceramic cements. Results determined that the bioceramic cement investigated induced significantly lower polarization resistance values and a higher corrosion rate relative to noncemented cpTi. Resin, eugenol, and zinc phosphate cements exhibited corrosion behavior between that of control and bioceramic-cemented cpTi. Overall, fluoride-containing cements were observed to increase the corrosion rate of cpTi.
Clinical and Experimental Dental Research | 2016
Lucas C. Rodriguez; Juliana N. Saba; Clark A. Meyer; Kwok-Hung Chung; Chandur Wadhwani; Danieli C. Rodrigues
Recent literature indicates that the long‐term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment – cementation, has been criticized because of recent links between residual cement and peri‐implant disease. Residual cement extrusion from crown‐abutment margins post‐crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D‐printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck‐margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post‐cement‐retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall.
Archive | 2017
Danieli C. Rodrigues; Izabelle M. Gindri; Sathyanarayanan Sridhar; Lucas C. Rodriguez; Shant Aghyarian