Lucía B. Scaffardi
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucía B. Scaffardi.
Journal of Physics D | 2009
Daniel C. Schinca; Lucía B. Scaffardi; Fabian Videla; G. A. Torchia; Pablo Moreno; Luis Roso
The generation of small silver metal nanoparticles (Nps) by ultrashort pulsed laser ablation has been an active area of research in recent years due to their interest in several fields of applied research such as biotechnology and material research, in particular those with sizes smaller than 10 nm. In general, laser ablation tends to produce environmentally clean metal Nps compared with wet chemical methods. However, since silver may be oxidized in the presence of water or ethanol, core–shell silver–silver oxide (Ag–Ag2O) Nps can be formed, whose size and thickness must be determined and characterized for functionalization related to future applications. This work analyses the size characteristics of core–shell Ag–Ag2O colloid nanostructures (smaller than 10 nm) obtained by femtosecond laser ablation of solid silver targets in different liquid media (water or ethanol) through the study of their optical extinction spectra. A fit of full experimental spectrum using Mie theory allows the determination of core size and shell thickness distributions as a function of fluence. The red-shift of the plasmon peak wavelength with respect to the bare-core peak wavelength at 400 nm, produced by the oxide shell, may be easily measured even for very small thicknesses. It was found that the dominant Ag2O effective thickness is inversely proportional to the fluence, reaching a maximum of 0.2 nm for a fluence of 60 J cm−2 and a minimum of 0.04 nm for a fluence of 1000 J cm−2.
Journal of Applied Physics | 2013
J. M. J. Santillán; F. A. Videla; M. B. Fernández van Raap; Daniel C. Schinca; Lucía B. Scaffardi
We report on the analysis of structure, configuration, and sizing of Cu and Cu oxide nanoparticles (Nps) produced by femtosecond (fs) laser ablation of solid copper target in liquids. Laser pulse energy ranged between 500 μJ and 50 μJ. Water and acetone were used to produce the colloidal suspensions. The study was performed through optical extinction spectroscopy using Mie theory to fit the full experimental spectra, considering free and bound electrons size dependent contributions to the metal dielectric function. Raman spectroscopy and AFM technique were also used to characterize the sample. Considering the possible oxidation of copper during the fabrication process, two species (Cu and Cu2O) arranged in two structures (bare core or core-shell) and in two configuration types (Cu-Cu2O or Cu2O-Cu) were considered for the fitting depending on the laser pulse energy and the surrounding media. For water at high energy, it can be observed that a Cu-Cu2O configuration fits the experimental spectra of the collo...
Journal of Physics D | 2011
J. M. J. Santillán; Lucía B. Scaffardi; Daniel C. Schinca
This paper develops a parametric method for determining the core radius and shell thickness in small silver?silver-oxide core?shell nanoparticles (Nps) based on single particle optical extinction spectroscopy.The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core?shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time.Using the electrostatic approximation of Mie theory, core?shell single particle extinction spectra were calculated for a silver particles core size smaller than about 20?nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver?silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness.This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Nps surrounding media.The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory. The method may be the basis for developing a plasmonic sensor for O2 concentration based on Ag single NP spectroscopy.
Journal of Applied Physics | 2010
Fabian Videla; G. A. Torchia; Daniel C. Schinca; Lucía B. Scaffardi; Pablo Moreno; C. Méndez; Lisandro J. Giovanetti; J. M. Ramallo Lopez; Luis Roso
Studies of fragmentation process of gold nanoparticles (Nps) in deionized water after generation by femtosecond laser ablation were performed. To analyze the fragmentation process, direct IR ultrafast pulses or super-continuum (SC) radiation focused in the colloidal solution were used in separate steps. IR pulses and SC generated externally in a sapphire crystal or directly inside the water were applied under low fluence regime. In the latter cases, to evaluate the effect on fragmentation of the different spectral bands present in the SC, we have determined different efficiency regions characterized by means of the product between the spectral response and the optical extinction spectrum corresponding to the initial Nps solution. From the analysis of this product function, we can conclude that the main fragmentation mechanism is due to linear absorption in the visible region. Likewise, the SC generated in water resulted more efficient than the SC obtained externally by a sapphire crystal. This fact may be...
Nanotechnology | 2007
Lucía B. Scaffardi; Marcelo Lester; Diana C. Skigin; J O Tocho
We present a method for sizing metallic nanowires through the analysis of the extinction spectra of the scattered light when the wires are illuminated alternatively with p- and s-polarization waves. The method is applied to isolated silver nanowires in air or immersed in index matching oil. The dielectric function of silver is affected by the size of the cylinders, and its influence on the extinction spectra near the plasmon resonance or near the dip position is considered. Due to the size of the nanocylinders, it is necessary to include two different permittivities in the electromagnetic model to analyse the behaviour of the material under different polarization incidences. This introduces anisotropy in the system, which comprises isotropic cylinders. The behaviour of the extinction spectra for p-waves allows us to determine the wire radii, taking into account the plasmon peak position for radii larger than 7 nm, or alternatively, by using the contrast between maximum and minimum intensity near the plasmon frequency, for radii lower than 5 nm. For s-waves, although no plasmon peak appears, we can determine the radii by analysing the contrast between the ridge of the spectra near 260–275 nm and the minimum near 320–330 nm for radii larger than 10 nm, or analysing the slope in the spectra over 350 nm, for radii below 10 nm. The present study shows that spectral extinction is a very simple and inexpensive technique that can be useful for characterizing the radius of nanocylinders when electron microscopy (TEM or SEM) is not available.
Journal of Physics D | 2013
J. M. J. Santillán; F. A. Videla; M. B. Fernández van Raap; Diego Muraca; Lucía B. Scaffardi; Daniel C. Schinca
The study of metal nanoparticles (NPs) is of great interest due to their ability to enhance optical fields on the nanometric scale, which makes them interesting for various applications in several fields of science and technology. In particular, their optical properties depend on the dielectric function of the metal, its size, shape and surrounding environment.This work analyses the contributions of free and bound electrons to the complex dielectric function of spherical silver NPs and their influence on the optical extinction spectra. The contribution of free electrons is usually corrected for particle size under 10?nm, introducing a modification of the damping constant to account for the extra collisions with the particles boundary.For the contribution of bound electrons, we considered the interband transitions from the d-band to the conduction band including the size dependence of the electronic density states for radii below 2?nm. Bearing in mind these specific modifications, it was possible to determine optical and band energy parameters by fitting the bulk complex dielectric function. The results obtained from the optimum fit are: Kbulk?=?2???1024 (coefficient for bound-electron contribution), Eg?=?1.91?eV (gap energy), EF?=?4.12?eV (Fermi energy), and ?b?=?1.5???1014?Hz (damping constant for bound electrons).Based on this size-dependent dielectric function, extinction spectra of silver particles in the nanometric?subnanometric radius range can be calculated using Mies theory, and its size behaviour analysed. These studies are applied to fit experimental extinction spectrum of very small spherical particles fabricated by fs laser ablation of a solid target in water. From the fitting, the structure and size distribution of core radius and shell thickness of the colloidal suspension could be determined. The spectroscopic results suggest that the colloidal suspension is composed by two types of structures: bare core and core?shell. The former is composed by Ag, while the latter is composed by two species: silver?silver oxide (Ag?Ag2O) and hollow silver (air?Ag) particles. High-resolution transmission microscopy and atomic force microscopy analysis performed on the dried suspension agree with the sizing obtained by optical extinction spectroscopy, showing that the latter is a very good complementary technique to standard microscopy methods.
Journal of Applied Physics | 2014
Luis J. Mendoza Herrera; David Muñetón Arboleda; Daniel C. Schinca; Lucía B. Scaffardi
This paper develops a novel method for simultaneously determining the plasma frequency ωP and the damping constant γfree in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ωp (0.5%–1.6%) and for γfree (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ωp and γfree determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ωp and γfree determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free el...
Journal of Applied Physics | 2012
J. M. J. Santillán; F. A. Videla; M. B. Fernández van Raap; Daniel C. Schinca; Lucía B. Scaffardi
Copper metal nanoparticles (Nps) have received increasing interest during the last years due to their potential applications in several fields of science and technology. Their optical properties depend on the characteristics of the dielectric function of the metal, their size, and the type of environment. The contribution of free and bound electrons on the dielectric function of copper Nps is analyzed as well as their influence on its plasmonic properties. The contribution of free electrons is corrected for particle size under 10 nm, introducing a term inversely proportional to the particles radius in the damping constant. For bound electron contribution, interband transitions from the d-band to the conduction band are considered. For particles with sizes below 2 nm, the larger spacing between electronic energy levels must be taken into account by making the electronic density of states in the conduction band size-dependent. Considering these specific modifications, optical parameters and band energy val...
Chemical Physics Letters | 1990
Ricardo Duchowicz; Lucía B. Scaffardi; Jorge O. Tocho
Abstract Fluorescence induced by laser excitation was used in the study of the deactivation processes of excited states of both isomeric forms of 3,3′-diethyloxadicarbocyanine iodide (DODCI). Connection between excited states was analyzed by a two-step excitation method, and no evidence of a direct connection between them was found at low concentrations. This technique allowed us to obtain a normal fluorescence free photoisomer spectrum for the first time. Using cw excitation, saturated fluorescence spectra were interpreted on the basis of a photochromic system involving normal and photoisomer ground states and excited singlet states. A similar one-dimensional barrier picture is obtained, comparing the results with the direct photoisomerization process.
Applied Optics | 1986
Daniel C. Schinca; Lucía B. Scaffardi; Jorge O. Tocho
The population mechanism in the Angstrom system of a CO pulsed laser are studied through analysis of the rotational intensities distribution of the emitted bands. The observed spectra were simulated by using a simple excitation model. The results suggest that, apart from electron impact, there is a strong radiative contribution of the VUV 4+ system to the gain of the visible emission through a selective depletion of the lower laser level.