Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Casadei is active.

Publication


Featured researches published by Lucia Casadei.


Molecular Nutrition & Food Research | 2009

Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts.

Piero Sestili; Elena Barbieri; Chiara Martinelli; Michela Battistelli; Michele Guescini; Luciana Vallorani; Lucia Casadei; Alessandra D'Emilio; Elisabetta Falcieri; Giovanni Piccoli; Deborah Agostini; Giosuè Annibalini; Marco Paolillo; Anna Maria Gioacchini; Vilberto Stocchi

Creatine (Cr), one of the most popular nutritional supplements among athletes, has been recently shown to prevent the cytotoxicity caused by different oxidative stressors in various mammalian cell lines, including C2C12 myoblasts, via a direct antioxidant activity. Here, the effect of Cr on the differentiating capacity of C2C12 cells exposed to H(2)O(2) has been investigated. Differentiation into myotubes was monitored using morphological, ultrastructural, and molecular techniques. Treatment with H(2)O(2) (1 h) not only caused a significant (30%) loss of cell viability, but also abrogated the myogenic ability of surviving C2C12. Cr-supplementation (24 h prior to H(2)O(2) treatment) was found to prevent these effects. Interestingly, H(2)O(2)-challenged cells preconditioned with the established antioxidants trolox or N-acetyl-cysteine, although cytoprotected, did not display the same differentiating ability characterizing oxidatively-injured, Cr-supplemented cells. Besides acting as an antioxidant, Cr increased the level of muscle regulatory factors and IGF1 (an effect partly refractory to oxidative stress), the cellular availability of phosphocreatine and seemed to exert some mitochondrially-targeted protective activity. It is concluded that Cr preserves the myogenic ability of oxidatively injured C2C12 via a pleiotropic mechanism involving not only its antioxidant capacity, but also the contribution to cell energy charge and effects at the transcriptional level which common bona fide antioxidants lack.


Mutation Research | 2010

Sulforaphane induces DNA single strand breaks in cultured human cells.

Piero Sestili; Marco Paolillo; Monia Lenzi; Evelin Colombo; Luciana Vallorani; Lucia Casadei; Chiara Martinelli; Carmela Fimognari

Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 microM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of SFR in anticancer drug protocols.


Journal of Aging Research | 2011

Morphofunctional and Biochemical Approaches for Studying Mitochondrial Changes during Myoblasts Differentiation.

Elena Barbieri; Michela Battistelli; Lucia Casadei; Luciana Vallorani; Giovanni Piccoli; Michele Guescini; Anna Maria Gioacchini; Emanuela Polidori; Sabrina Zeppa; Paola Ceccaroli; Laura Stocchi; Vilberto Stocchi; Elisabetta Falcieri

This study describes mitochondrial behaviour during the C2C12 myoblast differentiation program and proposes a proteomic approach to mitochondria integrated with classical morphofunctional and biochemical analyses. Mitochondrial ultrastructure variations were determined by transmission electron microscopy; mitochondrial mass and membrane potential were analysed by Mitotracker Green and JC-1 stains and by epifluorescence microscope. Expression of PGC1α, NRF1α, and Tfam genes controlling mitochondrial biogenesis was studied by real-time PCR. The mitochondrial functionality was tested by cytochrome c oxidase activity and COXII expression. Mitochondrial proteomic profile was also performed. These assays showed that mitochondrial biogenesis and activity significantly increase in differentiating myotubes. The proteomic profile identifies 32 differentially expressed proteins, mostly involved in oxidative metabolism, typical of myotubes formation. Other notable proteins, such as superoxide dismutase (MnSOD), a cell protection molecule, and voltage-dependent anion-selective channel protein (VDAC1) involved in the mitochondria-mediated apoptosis, were found to be regulated by the myogenic process. The integration of these approaches represents a helpful tool for studying mitochondrial dynamics, biogenesis, and functionality in comparative surveys on mitochondrial pathogenic or senescent satellite cells.


European Journal of Histochemistry | 2009

Proteomics-based investigation in C2C12 myoblast differentiation

Lucia Casadei; Luciana Vallorani; Anna Maria Gioacchini; Michele Guescini; Sabrina Burattini; Alessandra D'Emilio; Laura Biagiotti; Elisabetta Falcieri; Vilberto Stocchi

Skeletal muscle cell differentiation is a multistage process extensively studied over the years. Even if great improvements have been achieved in defining biological process underlying myogenesis, many molecular mechanisms need still to be clarified. To further highlight this process, we studied cells at undifferentiated, intermediate and highly differentiated stages, and we analyzed, for each condition, morphological and proteomic changes. We also identified the proteins that showed statistical significant changes by a ESI-Q-TOF mass spectrometer. This work provides further evidence of the involvement of particular proteins in skeletal muscle development. Furthermore, the high level of expression of many heat shock proteins, suggests a relationship between differentiation and cellular stress. Intriguingly, the discovery of myogenesis-correlated proteins, known to play a role in apoptosis, suggests a link between differentiation and this type of cell death.


Bioelectromagnetics | 2012

Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300 mT static magnetic field.

Emanuela Polidori; Sabrina Zeppa; Lucia Potenza; Chiara Martinelli; Evelin Colombo; Lucia Casadei; Deborah Agostini; Piero Sestili; Vilberto Stocchi

In a previous investigation we reported that exposure to a moderate (300 mT) static magnetic field (SMF) causes transient DNA damage and promotes mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs). To better understand the response of HUVECs to the 300 mT SMF, a high-quality subtracted cDNA library representative of genes induced in cells after 4 h of static magnetic exposure was constructed. The global gene expression profile showed that several genes were induced after the SMF exposure. The characterized clones are involved in cell metabolism, energy, cell growth/division, transcription, protein synthesis, destination and storage, membrane injury, DNA damage/repair, and oxidative stress response. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed at 4 and 24 h on four selected genes. Their expression profiles suggest that HUVECs response to SMF exposure is transient. Furthermore, compared to control cells, an up-regulation of several genes involved in cell growth and division was observed. This up-regulation is likely to be the cause of the slight, but significant, increase in cell proliferation at 12 h post-treatment. These results provide additional support to the notion that SMFs may be harmless to human health, and could support the rationale for their possible use in medical treatments.


Journal of Molecular Microbiology and Biotechnology | 2015

Biochemical characterization and antioxidant and antiproliferative activities of different Ganoderma collections

Roberta Saltarelli; Paola Ceccaroli; Michele Buffalini; Luciana Vallorani; Lucia Casadei; Alessandra Zambonelli; Mirco Iotti; Susanna M. Badalyan; Vilberto Stocchi

The aim of this study was to conduct a molecular and biochemical characterization and to compare the antioxidant and antiproliferative activities of four Ganoderma isolates belonging to Ganoderma lucidum (Gl-4, Gl-5) and Ganoderma resinaceum (F-1, F-2) species. The molecular identification was performed by ITS and IGS sequence analyses and the biochemical characterization by enzymatic and proteomic approaches. The antioxidant activity of the ethanolic extracts was compared by three different methods and their flavonoid contents were also analyzed by high-performance liquid chromatography. The antiproliferative effect on U937 cells was determined by MTT assay. The studied mycelia differ both in the enzymatic activities and protein content. The highest content in total phenol and the highest antioxidant activity for DPPH free radical scavenging and chelating activity on Fe2+ were observed with the Gl-4 isolate of G. lucidum. The presence of quercetin, rutin, myricetin, and morin as major flavonoids with effective antioxidant activity was detected. The ethanolic extracts from mycelia of G. lucidum isolates possess a substantial antiproliferative activity against U937 cells in contrast to G. resinaceum in which the antiproliferative effects were insignificant. This study provides a comparison between G. lucidum and G. resinaceum mycelial strains, and shows that G. resinaceum could be utilized to obtain several bioactive compounds.


Experimental Cell Research | 2010

C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction.

Michele Guescini; Diego Guidolin; Luciana Vallorani; Lucia Casadei; Anna Maria Gioacchini; Pasquale Tibollo; Michela Battistelli; Elisabetta Falcieri; L. Battistin; Luigi F. Agnati; Vilberto Stocchi


Food Chemistry | 2009

Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy

Roberta Saltarelli; Paola Ceccaroli; Mirco Iotti; Alessandra Zambonelli; Michele Buffalini; Lucia Casadei; Luciana Vallorani; Vilberto Stocchi


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2013

CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state

Vania Patrone; Raffaella Campana; Luciana Vallorani; Sabrina Dominici; Sara Federici; Lucia Casadei; Anna Maria Gioacchini; Vilberto Stocchi; Wally Baffone


International Dairy Journal | 2012

Bacterial diversity of traditional Fossa (pit) cheese and its ripening environment

Elena Barbieri; Giuditta F. Schiavano; Mauro De Santi; Luciana Vallorani; Lucia Casadei; Michele Guescini; Anna Maria Gioacchini; Laura Rinaldi; Vilberto Stocchi; Giorgio Brandi

Collaboration


Dive into the Lucia Casadei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge