Lucía Inglada-Pérez
Instituto de Salud Carlos III
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucía Inglada-Pérez.
Nature Genetics | 2011
Iñaki Comino-Méndez; Francisco Javier Gracia-Aznárez; Francesca Schiavi; Iñigo Landa; Luis J. Leandro-García; Rocío Letón; Emiliano Honrado; Rocío Ramos-Medina; Daniela Caronia; Guillermo Pita; Álvaro Gómez-Graña; Aguirre A. de Cubas; Lucía Inglada-Pérez; Agnieszka Maliszewska; Elisa Taschin; Sara Bobisse; Giuseppe Pica; Paola Loli; Rafael Hernández-Lavado; José A. Díaz; Mercedes Gómez-Morales; Anna González-Neira; Giovanna Roncador; Cristina Rodríguez-Antona; Javier Benitez; Massimo Mannelli; Giuseppe Opocher; Mercedes Robledo; Alberto Cascón
Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.
Clinical Cancer Research | 2012
Nelly Burnichon; Alberto Cascón; Francesca Schiavi; NicolePaes Morales; Iñaki Comino-Méndez; Nasséra Abermil; Lucía Inglada-Pérez; Aguirre A. de Cubas; Laurence Amar; Marta Barontini; Sandra Bernaldo De Quiroś; Jérôome Bertherat; Yves Jean Bignon; Marinus J. Blok; Sara Bobisse; Salud Borrego; Maurizio Castellano; Philippe Chanson; María Dolores Chiara; Eleonora P. M. Corssmit; Mara Giacchè; Ronald R. de Krijger; Tonino Ercolino; Xavier Girerd; Encarna B. Gomez-Garcia; Álvaro Gómez-Graña; Isabelle Guilhem; Frederik J. Hes; Emiliano Honrado; Esther Korpershoek
Purpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest–derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear. This study aimed to examine the prevalence and associated phenotypic features of germline and somatic MAX mutations in PCC/PGL. Design: We sequenced MAX in 1,694 patients with PCC or PGL (without mutations in other major susceptibility genes) from 17 independent referral centers. We screened for large deletions/duplications in 1,535 patients using a multiplex PCR-based method. Somatic mutations were searched for in tumors from an additional 245 patients. The frequency and type of MAX mutation was assessed overall and by clinical characteristics. Results: Sixteen MAX pathogenic mutations were identified in 23 index patients. All had adrenal tumors, including 13 bilateral or multiple PCCs within the same gland (P < 0.001), 15.8% developed additional tumors at thoracoabdominal sites, and 37% had familial antecedents. Age at diagnosis was lower (P = 0.001) in MAX mutation carriers compared with nonmutated cases. Two patients (10.5%) developed metastatic disease. A mutation affecting MAX was found in five tumors, four of them confirmed as somatic (1.65%). MAX tumors were characterized by substantial increases in normetanephrine, associated with normal or minor increases in metanephrine. Conclusions: Germline mutations in MAX are responsible for 1.12% of PCC/PGL in patients without evidence of other known mutations and should be considered in the genetic work-up of these patients. Clin Cancer Res; 18(10); 2828–37. ©2012 AACR.
JAMA | 2010
Li Yao; Francesca Schiavi; Alberto Cascón; Yuejuan Qin; Lucía Inglada-Pérez; Elizabeth E. King; Rodrigo A. Toledo; Tonino Ercolino; Elena Rapizzi; Christopher J. Ricketts; Luigi Mori; Mara Giacchè; Antonella Mendola; Elisa Taschin; Francesca Boaretto; Paola Loli; Maurizio Iacobone; Gian Paolo Rossi; Bernadette Biondi; José Viana Lima-Junior; Claudio E. Kater; Marie Bex; Miikka Vikkula; Ashley B. Grossman; Stephen B. Gruber; Marta Barontini; Alexandre Persu; Maurizio Castellano; Sergio P. A. Toledo; Eamonn R. Maher
CONTEXT Pheochromocytomas and paragangliomas are genetically heterogeneous neural crest-derived neoplasms. We recently identified germline mutations of the novel transmembrane-encoding gene FP/TMEM127 in familial and sporadic pheochromocytomas consistent with a tumor suppressor effect. OBJECTIVES To examine the prevalence and spectrum of FP/TMEM127 mutations in pheochromocytomas and paragangliomas and to test the effect of mutations in vitro. DESIGN, SETTING, AND PARTICIPANTS We sequenced the FP/TMEM127 gene in 990 individuals with pheochromocytomas and/or paragangliomas, including 898 previously unreported cases without mutations in other susceptibility genes from 8 independent worldwide referral centers between January 2009 and June 2010. A multiplex polymerase chain reaction-based method was developed to screen for large gene deletions in 545 of these samples. Confocal microscopy of 5 transfected mutant proteins was used to determine their subcellular localization. MAIN OUTCOME MEASURES The frequency and type of FP/TMEM127 mutation or deletion was assessed and correlated with clinical variables; the subcellular localization of 5 overexpressed mutants was compared with wild-type FP/TMEM127 protein. RESULTS We identified 19 potentially pathogenic FP/TMEM127 germline mutations in 20 independent families, but no large deletions were detected. All mutation carriers had adrenal tumors, including 7 bilateral (P = 2.7 × 10(-4)) and/or with familial disease (5 of 20 samples; P = .005). The median age at disease onset in the FP/TMEM127 mutation group was similar to that of patients without a mutation (41.5 vs 45 years, respectively; P = .54). The most common presentation was that of a single benign adrenal tumor in patients older than 40 years. Malignancy was seen in 1 mutation carrier (5%). Expression of 5 novel FP/TMEM127 mutations in cell lines revealed diffuse localization of the mutant proteins in contrast with the discrete multiorganelle distribution of wild-type TMEM127. CONCLUSIONS Germline mutations of FP/TMEM127 were associated with pheochromocytoma but not paraganglioma and occurred in an age group frequently excluded from genetic screening algorithms. Disease-associated mutations disrupt intracellular distribution of the FP/TMEM127 protein.
Molecular Endocrinology | 2010
Elena López-Jiménez; Gonzalo Gómez-López; L. Javier Leandro-García; Iván Muñoz; Francesca Schiavi; Cristina Montero-Conde; Aguirre A. de Cubas; Ricardo Ramires; Iñigo Landa; Susanna Leskelä; Agnieszka Maliszewska; Lucía Inglada-Pérez; Leticia de la Vega; Cristina Rodríguez-Antona; Rocío Letón; Carmen Bernal; Jose M. de Campos; Cristina Diez-Tascón; Mario F. Fraga; Cesar Boullosa; David G. Pisano; Giuseppe Opocher; Mercedes Robledo; Alberto Cascón
The six major genes involved in hereditary susceptibility for pheochromocytoma (PCC)/paraganglioma (PGL) (RET, VHL, NF1, SDHB, SDHC, and SDHD) have been recently integrated into the same neuronal apoptotic pathway where mutations in any of these genes lead to cell death. In this model, prolyl hydroxylase 3 (EglN3) abrogation plays a pivotal role, but the molecular mechanisms underlying its inactivation are currently unknown. The aim of the study was to decipher specific alterations associated with the different genetic classes of PCCs/PGLs. With this purpose, 84 genetically characterized tumors were analyzed by means of transcriptional profiling. The analysis revealed a hypoxia-inducible factor (HIF)-related signature common to succinate dehydrogenase (SDH) and von Hippel-Lindau (VHL) tumors, that differentiated them from RET and neurofibromatosis type 1 cases. Both canonical HIF-1α and HIF-2α target genes were overexpressed in the SDH/VHL cluster, suggesting that a global HIF deregulation accounts for this common profile. Nevertheless, when we compared VHL tumors with SDHB cases, which often exhibit a malignant behavior, we found that HIF-1α target genes showed a predominant activation in the VHL PCCs. Expression data from 67 HIF target genes was sufficient to cluster SDHB and VHL tumors into two different groups, demonstrating different pseudo-hypoxic signatures. In addition, VHL-mutated tumors showed an unexpected overexpression of EglN3 mRNA that did not lead to significantly different EglN3 protein levels. These findings pave the way for more specific therapeutic approaches for malignant PCCs/PGLs management based on the patients genetic alteration.
PLOS Genetics | 2009
Iñigo Landa; Sergio Ruiz-Llorente; Cristina Montero-Conde; Lucía Inglada-Pérez; Francesca Schiavi; Susanna Leskelä; Guillermo Pita; Roger L. Milne; Javier Maravall; Ignacio Ramos; Víctor Andía; Paloma Rodríguez-Poyo; Antonino Jara-Albarrán; Amparo Meoro; Cristina Del Peso; Luis Arribas; Pedro Iglesias; Javier Caballero; Joaquín Serrano; Antonio Picó; Francisco Pomares; Gabriel Giménez; Pedro López-Mondéjar; Roberto Castello; Isabella Merante-Boschin; Maria Rosa Pelizzo; Didac Mauricio; Giuseppe Opocher; Cristina Rodríguez-Antona; Anna González-Neira
In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.
Human Molecular Genetics | 2013
Iñaki Comino-Méndez; Aguirre A. de Cubas; Carmen Bernal; Cristina Álvarez-Escolá; Carolina Sánchez-Malo; César L. Ramírez-Tortosa; Susana Pedrinaci; Elena Rapizzi; Tonino Ercolino; Giampaolo Bernini; Alessandra Bacca; Rocío Letón; Guillermoó Pita; María R. Alonso; Luis J. Leandro-García; Álvaro Gómez-Graña; Lucía Inglada-Pérez; Veronika Mancikova; Cristina Rodríguez-Antona; Massimo Mannelli; Mercedes Robledo; Alberto Cascón
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are chromaffin-cell tumors that arise from the adrenal medulla and extra-adrenal paraganglia, respectively. The dysfunction of genes involved in the cellular response to hypoxia, such as VHL, EGL nine homolog 1, and the succinate dehydrogenase (SDH) genes, leads to a direct abrogation of hypoxia inducible factor (HIF) degradation, resulting in a pseudo-hypoxic state implicated in PCC/PGL development. Recently, somatic post-zygotic mutations in EPAS1 (HIF2A) have been found in patients with multiple PGLs and congenital erythrocytosis. We assessed 41 PCCs/PGLs for mutations in EPAS1 and herein describe the clinical, molecular and genetic characteristics of the 7 patients found to carry somatic EPAS1 mutations; 4 presented with multiple PGLs (3 of them also had congenital erythrocytosis), whereas 3 were single sporadic PCC/PGL cases. Gene expression analysis of EPAS1-mutated tumors revealed similar mRNA EPAS1 levels to those found in SDH-gene- and VHL-mutated cases and a significant up-regulation of two hypoxia-induced genes (PCSK6 and GNA14). Interestingly, single nucleotide polymorphism array analysis revealed an exclusive gain of chromosome 2p in three EPAS1-mutated tumors. Furthermore, multiplex-PCR screening for small rearrangements detected a specific EPAS1 gain in another EPAS1-mutated tumor and in three non-EPAS1-mutated cases. The finding that EPAS1 is involved in the sporadic presentation of the disease not only increases the percentage of PCCs/PGLs with known driver mutations, but also highlights the relevance of studying other hypoxia-related genes in apparently sporadic tumors. Finally, the detection of a specific copy number alteration affecting chromosome 2p in EPAS1-mutated tumors may guide the genetic diagnosis of patients with this disease.
Journal of the National Cancer Institute | 2015
Alberto Cascón; Iñaki Comino-Méndez; Maria Currás-Freixes; Aguirre A. de Cubas; Laura Contreras; Susan Richter; Mirko Peitzsch; Veronika Mancikova; Lucía Inglada-Pérez; Andrés Pérez-Barrios; María Calatayud; Sharona Azriel; Rosa Villar-Vicente; Javier Aller; Fernando Setien; Sebastian Moran; Juan F. García; Ana Río-Machín; Rocío Letón; Álvaro Gómez-Graña; María Apellániz-Ruiz; Giovanna Roncador; Manel Esteller; Cristina Rodríguez-Antona; Jorgina Satrústegui; Graeme Eisenhofer; Miguel Urioste; Mercedes Robledo
Disruption of the Krebs cycle is a hallmark of cancer. IDH1 and IDH2 mutations are found in many neoplasms, and germline alterations in SDH genes and FH predispose to pheochromocytoma/paraganglioma and other cancers. We describe a paraganglioma family carrying a germline mutation in MDH2, which encodes a Krebs cycle enzyme. Whole-exome sequencing was applied to tumor DNA obtained from a man age 55 years diagnosed with multiple malignant paragangliomas. Data were analyzed with the two-sided Students t and Mann-Whitney U tests with Bonferroni correction for multiple comparisons. Between six- and 14-fold lower levels of MDH2 expression were observed in MDH2-mutated tumors compared with control patients. Knockdown (KD) of MDH2 in HeLa cells by shRNA triggered the accumulation of both malate (mean ± SD: wild-type [WT] = 1±0.18; KD = 2.24±0.17, P = .043) and fumarate (WT = 1±0.06; KD = 2.6±0.25, P = .033), which was reversed by transient introduction of WT MDH2 cDNA. Segregation of the mutation with disease and absence of MDH2 in mutated tumors revealed MDH2 as a novel pheochromocytoma/paraganglioma susceptibility gene.
Endocrine-related Cancer | 2010
Cristina Rodríguez-Antona; Judith Pallares; Cristina Montero-Conde; Lucía Inglada-Pérez; Esmeralda Castelblanco; Iñigo Landa; Susanna Leskelä; Luis J. Leandro-García; Elena López-Jiménez; Rocío Letón; Alberto Cascón; Enrique Lerma; M. Carmen Martin; M Carmen Carralero; Didac Mauricio; Juan C. Cigudosa; Xavier Matias-Guiu; Mercedes Robledo
Therapeutic options for patients with metastatic medullary thyroid carcinoma (MTC) are limited due to lack of effective treatments. Thus, there is a need to thoroughly characterize the pathways of molecular pathogenesis and to identify potential targets for therapy in MTC. Since epidermal growth factor receptor (EGFR) seems to play a crucial role for RET activation, a key feature of MTCs, and several promising EGFR/vascular endothelial growth factor receptor 2 (VEGFR2)-targeted drugs have been developed, the present study was designed to investigate whether these proteins are altered in MTCs. We used a well-characterized series of 153 MTCs to evaluate EGFR activation by sequencing and FISH analysis, and to perform EGFR and VEGFR2 immunohistochemistry. EGFR tyrosine kinase domain mutations were not a feature of MTCs; however, EGFR polysomy and a strong EGFR expression were detected in 15 and 13% of the tumors respectively. Interestingly, EGFR was significantly overexpressed in metastases compared with primary tumors (35 vs 9%, P=0.002). We also studied whether specific RET mutations were associated with EGFR status, and found a decrease in EGFR polysomies (P=0.006) and a tendency towards lower EGFR expression for the most aggressive RET mutations (918, 883). Concerning VEGFR2, metastasis showed a higher expression than primary tumors (P=2.8 x 10(-8)). In this first study investigating the relationship between EGFR, RET, and VEGFR2 in a large MTC series, we found an activation of EGFR and VEGFR2 in metastasis, using both independent and matched primary/metastasis samples. This suggests that some MTC patients may benefit from existing anti-EGFR/VEFGR2 therapies, although additional preclinical and clinical evidence is needed.
PLOS Genetics | 2011
Beatriz Martínez-Delgado; Kira Yanowsky; Lucía Inglada-Pérez; Samuel Domingo; Miguel Urioste; Ana Osorio; Javier Benitez
There is increasing evidence suggesting that short telomeres and subsequent genomic instability contribute to malignant transformation. Telomere shortening has been described as a mechanism to explain genetic anticipation in dyskeratosis congenita and Li-Fraumeni syndrome. Since genetic anticipation has been observed in familial breast cancer, we aimed to study telomere length in familial breast cancer patients and hypothesized that genetic defects causing this disease would affect telomere maintenance resulting in shortened telomeres. Here, we first investigated age anticipation in mother-daughter pairs with breast cancer in 623 breast cancer families, classified as BRCA1, BRCA2, and BRCAX. Moreover, we analyzed telomere length in DNA from peripheral blood leukocytes by quantitative PCR in a set of 198 hereditary breast cancer patients, and compared them with 267 control samples and 71 sporadic breast cancer patients. Changes in telomere length in mother-daughter pairs from breast cancer families and controls were also evaluated to address differences through generations. We demonstrated that short telomeres characterize hereditary but not sporadic breast cancer. We have defined a group of BRCAX families with short telomeres, suggesting that telomere maintenance genes might be susceptibility genes for breast cancer. Significantly, we described that progressive telomere shortening is associated with earlier onset of breast cancer in successive generations of affected families. Our results provide evidence that telomere shortening is associated with earlier age of cancer onset in successive generations, suggesting that it might be a mechanism of genetic anticipation in hereditary breast cancer.
Clinical Chemistry | 2015
Nerea Matamala; María Teresa Vargas; Ricardo González-Cámpora; Rebeca Miñambres; José Ignacio Arias; Primitiva Menéndez; Eduardo Andrés-León; Gonzalo Gómez-López; Kira Yanowsky; Julio Calvete-Candenas; Lucía Inglada-Pérez; Beatriz Martínez-Delgado; Javier Benitez
BACKGROUND The identification of novel biomarkers for early breast cancer detection would be a great advance. Because of their role in tumorigenesis and stability in body fluids, microRNAs (miRNAs) are emerging as a promising diagnostic tool. Our aim was to identify miRNAs deregulated in breast tumors and evaluate the potential of circulating miRNAs in breast cancer detection. METHODS We conducted miRNA expression profiling of 1919 human miRNAs in paraffin-embedded tissue from 122 breast tumors and 11 healthy breast tissue samples. Differential expression analysis was performed, and a microarray classifier was generated. The most relevant miRNAs were analyzed in plasma from 26 healthy individuals and 83 patients with breast cancer (36 before and 47 after treatment) and validated in 116 healthy individuals and 114 patients before treatment. RESULTS We identified a large number of miRNAs deregulated in breast cancer and generated a 25-miRNA microarray classifier that discriminated breast tumors with high diagnostic sensitivity and specificity. Ten miRNAs were selected for further investigation, of which 4 (miR-505-5p, miR-125b-5p, miR-21-5p, and miR-96-5p) were significantly overexpressed in pretreated patients with breast cancer compared with healthy individuals in 2 different series of plasma. MiR-505-5p and miR-96-5p were the most valuable biomarkers (area under the curve 0.72). Moreover, the expression levels of miR-3656, miR-505-5p, and miR-21-5p were decreased in a group of treated patients. CONCLUSIONS Circulating miRNAs reflect the presence of breast tumors. The identification of deregulated miRNAs in plasma of patients with breast cancer supports the use of circulating miRNAs as a method for early breast cancer detection.