Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Jimenez-Rojo is active.

Publication


Featured researches published by Lucia Jimenez-Rojo.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration.

Thimios A. Mitsiadis; Anna Woloszyk; Lucia Jimenez-Rojo

Regenerative dentistry represents an attractive multidisciplinary therapeutic approach that complements traditional restorative/surgery techniques and benefits from recent advances in stem cell biology, molecular biology, genomics and proteomics. Materials science is important in such advances to move regenerative dentistry from the laboratory to the clinic. The design of novel nanostructured materials, such as biomimetic matrices and scaffolds for controlling cell fate and differentiation, and nanoparticles for diagnostics, imaging and targeted treatment, is needed. The combination of nanotechnology, which allows the creation of sophisticated materials with exquisite fine structural detail, and stem cell biology turns out to be increasingly useful in regenerative medicine. The administration to patients of dynamic biological agents comprising stem cells, bioactive scaffolds and/or nanoparticles will certainly increase the regenerative impact of dental pathological tissues. This overview briefly describes some of the actual benefits and future possibilities of nanomaterials in the emerging field of stem cell-based regenerative dentistry.


Frontiers in Physiology | 2012

Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

Lucia Jimenez-Rojo; Zoraide Granchi; Daniel Graf; Thimios A. Mitsiadis

The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues.


Cellular and Molecular Life Sciences | 2014

Roles of innervation in developing and regenerating orofacial tissues

Pierfrancesco Pagella; Lucia Jimenez-Rojo; Thimios A. Mitsiadis

The head is innervated by 12 cranial nerves (I–XII) that regulate its sensory and motor functions. Cranial nerves are composed of sensory, motor, or mixed neuronal populations. Sensory neurons perceive generally somatic sensations such as pressure, pain, and temperature. These neurons are also involved in smell, vision, taste, and hearing. Motor neurons ensure the motility of all muscles and glands. Innervation plays an essential role in the development of the various orofacial structures during embryogenesis. Hypoplastic cranial nerves often lead to abnormal development of their target organs and tissues. For example, Möbius syndrome is a congenital disease characterized by defective innervation (i.e., abducens (VI) and facial (VII) nerves), deafness, tooth anomalies, and cleft palate. Hence, it is obvious that the peripheral nervous system is needed for both development and function of orofacial structures. Nerves have a limited capacity to regenerate. However, neural stem cells, which could be used as sources for neural tissue maintenance and repair, have been found in adult neuronal tissues. Similarly, various adult stem cell populations have been isolated from almost all organs of the human body. Stem cells are tightly regulated by their microenvironment, the stem cell niche. Deregulation of adult stem cell behavior results in the development of pathologies such as tumor formation or early tissue senescence. It is thus essential to understand the factors that regulate the functions and maintenance of stem cells. Yet, the potential importance of innervation in the regulation of stem cells and/or their niches in most organs and tissues is largely unexplored. This review focuses on the potential role of innervation in the development and homeostasis of orofacial structures and discusses its possible association with stem cell populations during tissue repair.


Cell and Tissue Research | 2012

Epiprofin/Sp6 regulates Wnt-BMP signaling and the establishment of cellular junctions during the bell stage of tooth development

Gaskon Ibarretxe; Maitane Aurrekoetxea; Olatz Crende; Iker Badiola; Lucia Jimenez-Rojo; Takashi Nakamura; Yoshihiko Yamada; Fernando Unda

Epiprofin/Specificity Protein 6 (Epfn) is a Krüppel-like family (KLF) transcription factor that is critically involved in tooth morphogenesis and dental cell differentiation. However, its mechanism of action is still not fully understood. We have employed both loss-of-function and gain-of-function approaches to address the role of Epfn in the formation of cell junctions in dental cells and in the regulation of junction-associated signal transduction pathways. We have evaluated the expression of junction proteins in bell-stage incisor and molar tooth sections from Epfn(−/−) mice and in dental pulp MDPC-23 cells overexpressing Epfn. In Epfn(−/−) mice, a dramatic reduction occurs in the expression of tight junction and adherens junction proteins and of the adherens-junction-associated β-catenin protein, a major effector of canonical Wnt signaling. Loss of cell junctions and β-catenin in Epfn(−/−) mice is correlated with a clear decrease in bone morphogenetic protein 4 (BMP-4) expression, a decrease in nestin in the tooth mesenchyme, altered cell proliferation, and failure of ameloblast cell differentiation. Overexpression of Epfn in MDPC-23 cells results in an increased cellular accumulation of β-catenin protein, indicative of upregulation of canonical Wnt signaling. Together, these results suggest that Epfn enhances canonical Wnt/β-catenin signaling in the developing dental pulp mesenchyme, a condition that promotes the activity of other downstream signaling pathways, such as BMP, which are fundamental for cellular induction and ameloblast differentiation. These altered signaling events might underlie some of the most prominent dental defects observed in Epfn(−/−) mice, such as the absence of ameloblasts and enamel, and might throw light on developmental malformations of the tooth, including hyperdontia.


Frontiers in Physiology | 2014

Microfluidics co-culture systems for studying tooth innervation

Pierfrancesco Pagella; Estrela Neto; Lucia Jimenez-Rojo; Meriem Lamghari; Thimios A. Mitsiadis

Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.


Frontiers in Cell and Developmental Biology | 2016

Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis

Maitane Aurrekoetxea; Igor Irastorza; Patricia García-Gallastegui; Lucia Jimenez-Rojo; Takashi Nakamura; Yoshihiko Yamada; Gaskon Ibarretxe; Fernando Unda

Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. Results: Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.


Bone | 2014

EMMPRIN/CD147 deficiency disturbs ameloblast–odontoblast cross-talk and delays enamel mineralization

Mayssam Khaddam; Eric Huet; Benoit Vallée; Morad Bensidhoum; Dominique Le Denmat; Anna Filatova; Lucia Jimenez-Rojo; Sandy Ribes; Georg Lorenz; Maria Morawietz; Gaël Y. Rochefort; Andreas Kiesow; Thimios A. Mitsiadis; Anne Poliard; Matthias Petzold; Eric E. Gabison; Suzanne Menashi; Catherine Chaussain

Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition.


Journal of Bone and Mineral Research | 2017

Epiprofin Regulates Enamel Formation and Tooth Morphogenesis by Controlling Epithelial-Mesenchymal Interactions During Tooth Development

Takashi Nakamura; Lucia Jimenez-Rojo; Eiki Koyama; Maurizio Pacifici; Susana de Vega; Masahiro Iwamoto; Satoshi Fukumoto; Fernando Unda; Yoshihiko Yamada

The synchronization of cell proliferation and cytodifferentiation between dental epithelial and mesenchymal cells is required for the morphogenesis of teeth with the correct functional shapes and optimum sizes. Epiprofin (Epfn), a transcription factor belonging to the Sp family, regulates dental epithelial cell proliferation and is essential for ameloblast and odontoblast differentiation. Epfn deficiency results in the lack of enamel and ironically the formation of extra teeth. We investigated the mechanism underlying the functions of Epfn in tooth development through the creation of transgenic mice expressing Epfn under the control of an epithelial cell‐specific K5 promoter (K5‐Epfn). We found that these K5‐Epfn mice developed abnormally shaped incisors and molars and formed fewer molars in the mandible. Remarkably, ameloblasts differentiated ectopically and enamel was formed on the lingual side of the K5‐Epfn incisors. By contrast, ameloblasts and enamel were found only on the labial side in wild‐type mice, as Follistatin (Fst) expressed in the lingual side inhibits BMP4 signaling necessary for ameloblast differentiation. We showed that Epfn transfection into the dental epithelial cell line SF2 abrogated the inhibitory activity of Fst and promoted ameloblast differentiation of SF2 cells. We found that Epfn induced FGF9 in dental epithelial cells and this dental epithelial cell‐derived FGF9 promoted dental mesenchymal cell proliferation via the FGF receptor 1c (FGFR1c). Taken together, these results suggest that Epfn preserves the balance between cell proliferation and cytodifferentiation in dental epithelial and mesenchymal cells during normal tooth development and morphogenesis.


Frontiers in Physiology | 2017

Generation of Spheres from Dental Epithelial Stem Cells

Despoina Natsiou; Zoraide Granchi; Thimios A. Mitsiadis; Lucia Jimenez-Rojo

The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes.


Frontiers in Physiology | 2017

A Bio-Realistic Finite Element Model to Evaluate the Effect of Masticatory Loadings on Mouse Mandible-Related Tissues

Alexander Tsouknidas; Lucia Jimenez-Rojo; Evangelos Karatsis; N. Michailidis; Thimios A. Mitsiadis

Mice are arguably the dominant model organisms for studies investigating the effect of genetic traits on the pathways to mammalian skull and teeth development, thus being integral in exploring craniofacial and dental evolution. The aim of this study is to analyse the functional significance of masticatory loads on the mouse mandible and identify critical stress accumulations that could trigger phenotypic and/or growth alterations in mandible-related structures. To achieve this, a 3D model of mouse skulls was reconstructed based on Micro Computed Tomography measurements. Upon segmenting the main hard tissue components of the mandible such as incisors, molars and alveolar bone, boundary conditions were assigned on the basis of the masticatory muscle architecture. The model was subjected to four loading scenarios simulating different feeding ecologies according to the hard or soft type of food and chewing or gnawing biting movement. Chewing and gnawing resulted in varying loading patterns, with biting type exerting a dominant effect on the stress variations experienced by the mandible and loading intensity correlating linearly to the stress increase. The simulation provided refined insight on the mechanobiology of the mouse mandible, indicating that food consistency could influence micro evolutionary divergence patterns in mandible shape of rodents.

Collaboration


Dive into the Lucia Jimenez-Rojo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Unda

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiko Yamada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaskon Ibarretxe

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Maitane Aurrekoetxea

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge