Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Lazorova is active.

Publication


Featured researches published by Lucia Lazorova.


Journal of Pharmaceutical Sciences | 2010

Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models

Johanna Linnankoski; Johanna Mäkelä; Joni J. Palmgrén; Timo Mauriala; Charlotta Vedin; Anna-Lena Ungell; Lucia Lazorova; Per Artursson; Arto Urtti; Marjo Yliperttula

The paracellular space defines the passive permeation of hydrophilic compounds in epithelia. The goal of this study was to characterise the paracellular permeation pathway in the human intestinal wall and differentiated epithelial cell models (MDCKII, Caco-2 and 2/4/A1). The permeabilities of hydrophilic polyethylene glycols (PEG) were investigated in diffusion chambers, and mass spectrometry was used to obtain accurate concentrations for each PEG molecule. The paracellular porosity and the size of the pores in the membranes were estimated from the PEG permeability data using an effusion-based approach. The porosities were found to be low (fraction 10(-7)-10(-5) of the epithelial surface) in all investigated membranes. Two different pore sizes (radii 5-6 and >10 A) were detected in the human intestinal epithelium and the Caco-2 and MDCKII cells, while only one (about 15 A) in the 2/4/A1 monolayer. The paracellular porosities of the human small intestine and 2/4/A1 monolayers were larger (>10(-7)) than that of the MDCKII and Caco-2 cells (<10(-7)). We report for the first time the quantitative values describing both porosity and pore size of the paracellular space in the human intestine. The cell models deviate from the small intestine either with respect to porosity (Caco-2, MDCKII) or pore size distribution (2/4/A1).


European Journal of Pharmaceutical Sciences | 2004

Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity

Jan Taipalensuu; Staffan Tavelin; Lucia Lazorova; Ann-Cathrin Svensson; Per Artursson

A limited number of gene expression studies have investigated the quantitative relationships between the amount of transcript, level of protein or activity/function, with disparate conclusions regarding these relationships. Collectively these studies indicate that the relevance of quantitative transcript analysis as a predictor of phenotype has to be evaluated on a gene-by-gene or even a case-by-case basis. The purpose of this study was to define a suitable marker for MDR1-dependent drug efflux, and to quantitatively investigate the relationships between the amount of transcript, protein and drug efflux in the frequently used Caco-2 cell model. The substrate specificity of digoxin, a commonly used marker for MDR1, was investigated using transgenic MDCK II or LLC-PK1 cell lines expressing the efflux proteins MDR1, BCRP and MRP2, since these proteins are localised to the apical part of the enterocyte plasma membrane and exhibit comparatively high transcript levels in the human small intestine. Relationships between levels of transcript, protein and function were investigated quantitatively using real-time RT-PCR, ECL western blot analysis and basolateral-to-apical and apical-to-basolateral efflux ratios. Our results indicate that digoxin is a specific marker for MDR1-dependent drug efflux in the Caco-2 cell drug absorption model and that MDR1 transcript abundance is at least as valid as MDR1 protein abundance as a predictor of MDR1 efflux activity.


Pharmacogenomics Journal | 2011

Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions

Gustav Ahlin; Ligong Chen; Lucia Lazorova; Ying Chen; Alexandra G. Ianculescu; Robert L. Davis; Kathleen M. Giacomini; Per Artursson

Common genetic variants of the liver-specific human organic cation transporter 1 (OCT1; SLC22A1) have reduced transport capacity for substrates such as the antidiabetic drug metformin. The effect of the reduced OCT1 function on drug interactions associated with OCT1 has not been investigated and was, therefore, the focus of the study presented here. HEK293 cells expressing human OCT1-reference or the variants R61C, V408M, M420del and G465R were first used to study the kinetics and inhibition pattern of the OCT1 substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+). In the second part OCT1-mediated 14C-metformin uptake was studied in the presence of drugs administered concomitantly with metformin. Transport studies using ASP+ showed that the function of the variants decreased in the following order: OCT1-reference=V408M=M420del >R61C >>G465R. Variants M420del and R61C were more sensitive to drug inhibition, with IC50 values up to 23 times lower than those of the OCT1-reference. Uptake studies using 14C-metformin were in qualitative agreement with those using ASP+, with the exception that a larger reduction in transport capacity was observed for M420del. Concomitantly administered drugs, such as verapamil and amitriptyline, revealed potential drug–drug interactions at clinical plasma concentrations of metformin for OCT1-M420del.


Experimental and Molecular Pathology | 2010

CFTR and tight junctions in cultured bronchial epithelial cells.

Harriet Nilsson; Anca Dragomir; Lucia Lazorova; Marie Johannesson; Godfried M. Roomans

Airway epithelial salt and water transport takes place through paracellular and transcellular pathways. This transport depends critically on the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane conductance regulator (CFTR), operating in concert with the paracellular pathway through the tight junctions (TJ). Normal (16HBE14o-), cystic fibrosis (CFBE41o-), and corrected CFBE41o- (CFBE41o-pCep4 overexpressing wtCFTR) airway epithelial cell lines were cultured under isotonic conditions. Transepithelial electrical resistance (TEER) was measured as indicator of the tightness of the cultures. Morphology was investigated by immunofluorescence and paracellular permeability by lanthanum nitrate or [14C] mannitol as permeability markers. The CFTR-defective cell line CFBE41o- developed higher TEER than its corrected counterpart CFBE41o-pCep4. Addition of a specific inhibitor of CFTR (CFTR(inh)-172) to 16HBE14o- and CFBE41o-pCep4 cells resulted in a time-dependent increase in TEER, whereas stimulation of CFTR by IBMX and forskolin caused a decrease. Permeability to lanthanum and [14C] mannitol was lower in CFBE41o- and in 16HBE14o- cells exposed to CFTR(inh)-172, compared to untreated 16HBE14o- and CFBE41o-pCep4 cells, respectively. 16HBE14o- cells exposed to IBMX and forskolin showed higher permeability to lanthanum but lower permeability to [14C] mannitol compared to control. Immunofluorescence revealed a disorganization of F-actin and alpha-tubulin in 16HBE14o- cells and CFBE41o- pCep4 exposed to CFTR(inh)-172 and in CFBE41o- cells. Changes in F-actin and alpha-tubulin in 16HBE14o- cells exposed to IBMX and forskolin were also seen. These results suggest the possibility of an interaction between CFTR and the TJ protein complex, probably via the cytoskeleton.


European Journal of Pharmaceutical Sciences | 2002

Determination of transport in the Caco-2 cell assay of compounds varying in lipophilicity using LC–MS: enhanced transport of Leu-enkephalin analogues

A. K. Wong; Benjamin P. Ross; Y. Chan; Per Artursson; Lucia Lazorova; Alun Jones; Istvan Toth

PURPOSE To synthesize a number of analogues of Leu-enkephalin with different lipophilicities and to develop an LC-MS method for determining the Caco-2 cell permeability values of these compounds. METHODS A number of sugar and sugar plus lipoamino acid analogues of Leu-enkephalin were synthesized by solid-phase and solution methods. An LC-MS method was developed for analyzing the Caco-2 cell assay samples and validated against the traditional method using radiolabelled compounds. RESULTS A sensitive and specific LC-MS assay was developed. Standard curves were linear in the range of 0.025-5 microM. Apparent permeability values determined by LC-MS and liquid scintillation counter were identical, for both a hydrophilic drug, cephalexin and a lipophilic Leu-enkaphalin analogue. Caco-2 permeability values for the analogues of Leu-enkephalin were determined and it was found that attachment of sugar or sugar and lipoamino acid to the Leu-enkephalin peptide resulted in an increase in the apparent permeability values compared to the native peptide, which was not transported across the Caco-2 cell monolayers. CONCLUSIONS A rapid, generic LC-MS method for analyzing a range of compounds was developed. Attachment of a sugar or sugar and lipoamino acid to Leu-enkephalin improves the apparent permeability across Caco-2 cell monolayers.


International Journal of Pharmaceutics | 2013

The degree of compression of spherical granular solids controls the evolution of microstructure and bond probability during compaction

Josefina Nordström; Ann-Sofie Persson; Lucia Lazorova; Göran Frenning; Göran Alderborn

The effect of degree of compression on the evolution of tablet microstructure and bond probability during compression of granular solids has been studied. Microcrystalline cellulose pellets of low (about 11%) and of high (about 32%) porosity were used. Tablets were compacted at 50, 100 and 150 MPa applied pressures and the degree of compression and the tensile strength of the tablets determined. The tablets were subjected to mercury intrusion measurements and from the pore size distributions, a void diameter and the porosities of the voids and the intra-granular pores were calculated. The pore size distributions of the tablets had peaks associated with the voids and the intra-granular pores. The void and intra-granular porosities of the tablets were dependent on the original pellet porosity while the total tablet porosity was independent. The separation distance between pellets was generally lower for tablets formed from high porosity pellets and the void size related linearly to the degree of compression. Tensile strength of tablets was higher for tablets of high porosity pellets and a scaled tablet tensile strength related linearly to the degree of compression above a percolation threshold. In conclusion, the degree of compression controlled the separation distance and the probability of forming bonds between pellets in the tablet.


International Journal of Pharmaceutics | 2016

Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy.

Samaneh Pazesh; Lucia Lazorova; Jonas Berggren; Göran Alderborn; Johan Gråsjö

The main purpose of the study was to evaluate various pre-processing and quantification approaches of Raman spectrum to quantify low level of amorphous content in milled lactose powder. To improve the quantification analysis, several spectral pre-processing methods were used to adjust background effects. The effects of spectral noise on the variation of determined amorphous content were also investigated theoretically by propagation of error analysis and were compared to the experimentally obtained values. Additionally, the applicability of calibration method with crystalline or amorphous domains in the estimation of amorphous content in milled lactose powder was discussed. Two straight baseline pre-processing methods gave the best and almost equal performance. By the succeeding quantification methods, PCA performed best, although the classical least square analysis (CLS) gave comparable results, while peak parameter analysis displayed to be inferior. The standard deviations of experimental determined percentage amorphous content were 0.94% and 0.25% for pure crystalline and pure amorphous samples respectively, which was very close to the standard deviation values from propagated spectral noise. The reasonable conformity between the milled samples spectra and synthesized spectra indicated representativeness of physical mixtures with crystalline or amorphous domains in the estimation of apparent amorphous content in milled lactose.


Pharmaceutical Research | 1998

Quantification and imaging of mannitol transport through Caco-2 cell monolayers using a positron-emitting tracer

Lucia Lazorova; Johan Gråsjö; Per Artursson; Mats Bergström; Feng Wu; Elisabeth Petterman-Bergström; Mattias Ögren; Bengt Långström

Quantification and imaging of mannitol transport through Caco-2 cell monolayers using a positron-emitting tracer


Antimicrobial Agents and Chemotherapy | 2005

Orally active antiviral tripeptide glycyl-prolyl-glycinamide is activated by CD26 (dipeptidyl peptidase IV) before transport across the intestinal epithelium

Ina Hubatsch; Lucia Lazorova; Anders Vahlne; Per Artursson

ABSTRACT The tripeptide amide glycyl-prolyl-glycinamide (GPG-amide) is a new antiretroviral drug candidate, but its absorption mechanism is unknown. In this investigation, the transport and metabolism of GPG-amide were studied in a model of the human intestinal epithelium, Caco-2 cell monolayers. The results show that when the tripeptide amide came into contact with the apical enterocyte membrane, it was degraded by CD26 (dipeptidyl peptidase IV) to glycylproline and the antiretrovirally active metabolite glycinamide. Glycinamide retained antiretroviral activity in vitro after transport through the Caco-2 cell monolayers. The transport of glycinamide across Caco-2 cell monolayers occurred via passive diffusion with an apparent permeability coefficient of about 2 × 10−6 cm s−1, which suggests that it is absorbed by the oral route in sufficient amounts to be considered for oral administration. In conclusion, the tripeptide GPG-amide acts as a prodrug that is activated by CD26 to release the orally active antiretroviral compound glycinamide.


Molecular Pharmaceutics | 2013

Combined in vitro-in vivo approach to assess the hepatobiliary disposition of a novel oral thrombin inhibitor.

Elin M. Matsson; Ulf G. Eriksson; Johan Palm; Per Artursson; Maria Karlgren; Lucia Lazorova; Marie Brännström; Anja Ekdahl; Kristina Dunér; Lars Knutson; Susanne Johansson; Kajs-Marie Schützer; Hans Lennernäs

Two clinical trials and a large set of in vitro transporter experiments were performed to investigate if the hepatobiliary disposition of the direct thrombin inhibitor prodrug AZD0837 is the mechanism for the drug-drug interaction with ketoconazole observed in a previous clinical study. In Study 1, [(3)H]AZD0837 was administered to healthy male volunteers (n = 8) to quantify and identify the metabolites excreted in bile. Bile was sampled directly from the jejunum by duodenal aspiration via an oro-enteric tube. In Study 2, the effect of ketoconazole on the plasma and bile pharmacokinetics of AZD0837, the intermediate metabolite (AR-H069927), and the active form (AR-H067637) was investigated (n = 17). Co-administration with ketoconazole elevated the plasma exposure to AZD0837 and the active form approximately 2-fold compared to placebo, which may be explained by inhibited CYP3A4 metabolism and reduced biliary clearance, respectively. High concentrations of the active form was measured in bile with a bile-to-plasma AUC ratio of approximately 75, indicating involvement of transporter-mediated excretion of the compound. AZD0837 and its metabolites were further investigated as substrates of hepatic uptake and efflux transporters in vitro. Studies in MDCK-MDR1 cell monolayers and P-glycoprotein (P-gp) expressing membrane vesicles identified AZD0837, the intermediate, and the active form as substrates of P-gp. The active form was also identified as a substrate of the multidrug and toxin extrusion 1 (MATE1) transporter and the organic cation transporter 1 (OCT1), in HEK cells transfected with the respective transporter. Ketoconazole was shown to inhibit all of these three transporters; in particular, inhibition of P-gp and MATE1 occurred in a clinically relevant concentration range. In conclusion, the hepatobiliary transport pathways of AZD0837 and its metabolites were identified in vitro and in vivo. Inhibition of the canalicular transporters P-gp and MATE1 may lead to enhanced plasma exposure to the active form, which could, at least in part, explain the clinical interaction with ketoconazole.

Collaboration


Dive into the Lucia Lazorova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Istvan Toth

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Wong

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge