Lucía M. Mendoza
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucía M. Mendoza.
Biotechnology Letters | 2007
Lucía M. Mendoza; María C. Manca de Nadra; Marta E. Farías
The kinetics and metabolic behavior of Kloeckera apiculata mc1 and Saccharomyces cerevisiae mc2 in composite culture was investigated. K. apiculata showed a higher viability through the fermentation; however the maximum cell density of both yeasts decreased. This behavior was not due to ethanol concentration, killer toxins production or competition for assimilable nitrogenous compounds between both yeasts. Despite the consistent production of secondary products by single culture of K. apiculata, an increase of these compounds was not observed in mixed culture. These results contribute to a better understanding of the behavior of non-Saccharomyces yeasts and their potential application in the wine industry.
Journal of Industrial Microbiology & Biotechnology | 2011
Lucía M. Mendoza; María G. Merín; Vilma I. Morata; Marta E. Farías
Two autochthonous yeasts from the northwest region of Argentina, Kloeckera apiculata mc1 and Saccharomyces cerevisiae mc2, were used as pure or mixed starter cultures in microvinification trials conducted in Malbec red must. Also, the effect of Oenococcus oeni X2L was evaluated. S. cerevisiae mc2 showed adequate growth and fermentative activity in single and composite fermentations, producing standard concentration of ethanol. The amount of esters was higher in fermentations conducted using mixed yeast starters. Independent of the timing of inoculation of O. oeni, this malolactic bacterium completely depleted malic acid. Sensory evaluation indicated that young wines fermented with mixed yeast cultures and sequential inoculation of O. oeni were preferred, achieving the highest scores for positive descriptors and they allowed better control of the sensory quality. Consequently, this study proposes inclusion of autochthonous K. apiculata mc1 as an adjunct culture to S. cerevisiae mc2 during Malbec must fermentation to improve the organoleptic properties of red wines. Furthermore, sequential inoculation of O. oeni X2L should be carried out after completion of the alcoholic fermentation to enhance sensory characteristics.
International Journal of Food Microbiology | 2011
María G. Merín; Lucía M. Mendoza; Marta E. Farías; Vilma I. Morata de Ambrosini
The present study was undertaken with the purpose of selecting yeasts from wine grapes that are able to produce extracellular cold-active pectinases. After two consecutive selections yeast isolates were identified by pheno- and genotyping, and pectinolytic activity was preliminarily characterised at proximate winemaking conditions. Out of 1023 indigenous microorganisms isolated from grape skins of D.O. San Rafael (Mendoza, Argentina) viticulture region, 565 (55%) showed pectinolytic activity on plates and, among them, 96 (17%) were chosen in a primary selection. Ten isolates were finally selected for exhibiting the greatest activity at low temperature (12 °C) and identified as Aureobasidium pullulans. GM-R-22 strain demonstrated the highest pectinolytic activity (0.751 U/mL) at pH 3.5 and 12 °C. Yeast pectinases were constitutively produced. This study is the first report about strains of A. pullulans producing pectinases which are able to show good activity at low temperature. These pectinolytic strains could be of interest in wine production.
Journal of Industrial Microbiology & Biotechnology | 2009
Lucía M. Mendoza; María C. Manca de Nadra; Elena Bru; Marta E. Farías
The influence of two physicochemical factors involved in winemaking, temperature and SO2, on the kinetics and metabolic behavior of Kloeckera apiculata and Saccharomyces cerevisiae was examined. Highest biomass was reached at 15 and 25°C for K. apiculata and S. cerevisiae, respectively. Pure cultures of K. apiculata died off early with increasing temperature, but in co-culture with S. cerevisiae it showed higher viability and a change in the death curve from exponential to linear. Statistical analysis revealed that metabolite production was significantly different for the three cultures and also at the different fermentation temperatures. Besides, the interaction between culture type and temperature was significant. At temperatures from 15 to 30°C the mixed culture showed similar ethanol and lower acetic acid production compared with a pure culture of K. apiculata. SO2 addition slightly increased survival of the non-Saccharomyces species in pure and mixed cultures. Statistical evaluation indicated that culture type and SO2 addition significantly affected metabolite production, but the interaction between culture and SO2 was not significant. These results contribute to current knowledge of enological factors and their effect on prevalence and fermentative activities of the composite yeast flora and the statistical significance emphasizes the importance of the combined influence of the culture type and physicochemical factors on the production of fermentation metabolites.
Journal of Basic Microbiology | 2014
María G. Merín; Lucía M. Mendoza; Vilma I. Morata de Ambrosini
In this study indigenous yeasts associated with wineries, grapes and Malbec fermented must from San Rafael viticulture region (Argentina) were isolated to select pectinolytic strains for their potential use in enology. Pectinolytic yeasts were identified by physiological and molecular methods. Among 78 isolates, only nine were able to produce extracellular pectinases. Six isolated from berry surface were identified as Aureobasidium pullulans and the remaining isolates, recovered from wineries, belonged to Saccharomyces cerevisiae and Filobasidium capsuligenum species. Pectinase production was evaluated under vinification‐related conditions: pH 3.5, 12 and 28 °C. A. pullulans U‐12 produced the highest pectinolytic activity at low temperature (1.16 U ml−1), while F. capsuligenum strains showed good activity at 12 and 28 °C (0.77 and 1.15 U ml−1, respectively) being this study the first report on the capacity of this species to produce pectinases. The pectinolytic activity of F. capsuligenum B‐13 showed an optimum at pH 4.5 and two peaks at 20 and 50 °C. The enzyme half‐life was 2 h at 40 °C and retained 65% of its activity at 40 °C after 1 h of incubation. This pectinolytic system displayed remarkable activity at pH and temperatures found in vinification, suggesting a potential candidate for applying to wine‐making.
Biotechnology Letters | 2011
Miguel Fernández de Ullivarri; Lucía M. Mendoza; Raúl R. Raya; Marta E. Farías
Of 31 yeasts, from different surfaces of two cellars from the northwest region of Argentina, 11 expressed killer activity against the sensitive strain Saccharomyces cerevisiae P351. Five of these killer yeasts were identified as S. cerevisiae by phenotypic tests and PCR-RFLP analysis. Two S. cerevisiae killer strains, Cf5 and Cf8, were selected based on their excellent kinetic and enological properties as potential autochthonous mixed starter cultures to be used during wine fermentation. They could dominate the natural microbiota in fermentation vats and keep the typical sensorial characteristics of the wine of this region.
Genome Announcements | 2015
Lucía M. Mendoza; Lucila Saavedra; Raúl R. Raya
ABSTRACT We report the draft genome sequence of Oenococcus oeni strain X2L, a potential starter culture of malolactic fermentation, isolated from Malbec wine of Argentina. Genes encoding for enzymes involved in the metabolism of malate, citrate, and nitrogen compounds, as well as aroma compounds, were found in this genome, showing its ability to improve the sensorial characteristics of wines.
International Journal of Food Microbiology | 2017
Mariana Pérez-Ibarreche; Lucía M. Mendoza; Graciela Vignolo; Silvina Fadda
Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered.
Food Research International | 2010
Lucía M. Mendoza; María C. Manca de Nadra; Marta E. Farías
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2014
Miguel Fernández de Ullivarri; Lucía M. Mendoza; Raúl R. Raya