Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Melloni is active.

Publication


Featured researches published by Lucia Melloni.


The Journal of Neuroscience | 2007

Synchronization of Neural Activity across Cortical Areas Correlates with Conscious Perception

Lucia Melloni; Carlos A. Molina; Marcela Peña; David Torres; Wolf Singer; Eugenio Rodriguez

Subliminal stimuli can be deeply processed and activate similar brain areas as consciously perceived stimuli. This raises the question which signatures of neural activity critically differentiate conscious from unconscious processing. Transient synchronization of neural activity has been proposed as a neural correlate of conscious perception. Here we test this proposal by comparing the electrophysiological responses related to the processing of visible and invisible words in a delayed matching to sample task. Both perceived and nonperceived words caused a similar increase of local (gamma) oscillations in the EEG, but only perceived words induced a transient long-distance synchronization of gamma oscillations across widely separated regions of the brain. After this transient period of temporal coordination, the electrographic signatures of conscious and unconscious processes continue to diverge. Only words reported as perceived induced (1) enhanced theta oscillations over frontal regions during the maintenance interval, (2) an increase of the P300 component of the event-related potential, and (3) an increase in power and phase synchrony of gamma oscillations before the anticipated presentation of the test word. We propose that the critical process mediating the access to conscious perception is the early transient global increase of phase synchrony of oscillatory activity in the gamma frequency range.


Frontiers in Integrative Neuroscience | 2009

Neural synchrony in cortical networks: history, concept and current status

Peter J. Uhlhaas; Gordon Pipa; Bruss Lima; Lucia Melloni; Sergio Neuenschwander; Danko Nikolić; Wolf Singer

Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.


Nature Neuroscience | 2016

Cortical tracking of hierarchical linguistic structures in connected speech

Nai Ding; Lucia Melloni; Hang Zhang; Xing Tian; David Poeppel

The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into larger structures on the basis of a grammatical system, resulting in a hierarchy of linguistic units, such as words, phrases and sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, hierarchical linguistic structures do not have boundaries that are clearly defined by acoustic cues and must therefore be internally and incrementally constructed during comprehension. We found that, during listening to connected speech, cortical activity of different timescales concurrently tracked the time course of abstract linguistic structures at different hierarchical levels, such as words, phrases and sentences. Notably, the neural tracking of hierarchical linguistic structures was dissociated from the encoding of acoustic cues and from the predictability of incoming words. Our results indicate that a hierarchy of neural processing timescales underlies grammar-based internal construction of hierarchical linguistic structure.


The Journal of Neuroscience | 2011

Expectations Change the Signatures and Timing of Electrophysiological Correlates of Perceptual Awareness

Lucia Melloni; Caspar M. Schwiedrzik; Notger G. Müller; Eugenio Rodriguez; Wolf Singer

Previous experience allows the brain to predict what comes next. How these expectations affect conscious experience is poorly understood. In particular, it is unknown whether and when expectations interact with sensory evidence in granting access to conscious perception, and how this is reflected electrophysiologically. Here, we parametrically manipulate sensory evidence and expectations while measuring event-related potentials in human subjects to assess the time course of evoked responses that correlate with subjective visibility, the properties of the stimuli, and/or perceptual expectations. We found that expectations lower the threshold of conscious perception and reduce the latency of neuronal signatures differentiating seen and unseen stimuli. Without expectations, this differentiation occurs ∼300 ms and with expectations ∼200 ms after stimulus in occipitoparietal sensors. The amplitude of this differentiating response component (P2) decreases as visibility increases, regardless of whether this increase is attributable to enhanced sensory evidence and/or the gradual buildup of perceptual expectations. Importantly, at matched performance levels, responses to seen and unseen stimuli differed regardless of the physical stimulus properties. These findings indicate that the latency of the neuronal correlates of access to consciousness depend on whether access is driven by stimulus saliency or by a combination of expectations and sensory evidence.


Trends in Cognitive Sciences | 2009

(Micro)Saccades, corollary activity and cortical oscillations

Lucia Melloni; Caspar M. Schwiedrzik; Eugenio Rodriguez; Wolf Singer

In natural vision, attention and eye movements are linked. Furthermore, eye movements structure the inflow of information into the visual system. Saccades, where little vision occurs, alternate with fixations, when most vision occurs. A mechanism must be in place to maximize information intake during fixations. Oscillatory synchrony has been proposed as a mechanism for rapid and reliable communication of signals, subserving cognitive functions such as attention and object identification. We propose that saccade-related corollary activity has a crucial role in anticipatory preparation of visual centers, which interacts with ongoing oscillation, favoring the processing of postfixational signals. During prolonged fixations, microsaccades could be generated to exploit this mechanism. Studying this interplay between the sensory and the motor system will provide novel insight into the dynamics of natural vision.


The Journal of Neuroscience | 2012

Local Category-Specific Gamma Band Responses in the Visual Cortex Do Not Reflect Conscious Perception

Jaan Aru; Nikolai Axmacher; Anne T. A. Do Lam; Juergen Fell; Christian E. Elger; Wolf Singer; Lucia Melloni

Which neural processes underlie our conscious experience? One theoretical view argues that the neural correlates of consciousness (NCC) reside in local activity in sensory cortices. Accordingly, local category-specific gamma band responses in visual cortex correlate with conscious perception. However, as most studies manipulated conscious perception by altering the amount of sensory evidence, it is possible that they reflect prerequisites or consequences of consciousness rather than the actual NCC. Here we directly address this issue by developing a new experimental paradigm in which conscious perception is modulated either by sensory evidence or by previous exposure of the images while recording intracranial EEG from the higher-order visual cortex of human epilepsy patients. A clear prediction is that neural processes directly reflecting conscious perception should be present regardless of how it comes about. In contrast, we observed that although subjective reports were modulated both by sensory evidence and by previous exposure, gamma band responses solely reflected sensory evidence. This result contradicts the proposal that local gamma band responses in the higher-order visual cortex reflect conscious perception.


Journal of Cognitive Neuroscience | 2012

Brain oscillations during spoken sentence processing

Marcela Peña; Lucia Melloni

Spoken sentence comprehension relies on rapid and effortless temporal integration of speech units displayed at different rates. Temporal integration refers to how chunks of information perceived at different time scales are linked together by the listener in mapping speech sounds onto meaning. The neural implementation of this integration remains unclear. This study explores the role of short and long windows of integration in accessing meaning from long samples of speech. In a cross-linguistic study, we explore the time course of oscillatory brain activity between 1 and 100 Hz, recorded using EEG, during the processing of native and foreign languages. We compare oscillatory responses in a group of Italian and Spanish native speakers while they attentively listen to Italian, Japanese, and Spanish utterances, played either forward or backward. The results show that both groups of participants display a significant increase in gamma band power (55–75 Hz) only when they listen to their native language played forward. The increase in gamma power starts around 1000 msec after the onset of the utterance and decreases by its end, resembling the time course of access to meaning during speech perception. In contrast, changes in low-frequency power show similar patterns for both native and foreign languages. We propose that gamma band power reflects a temporal binding phenomenon concerning the coordination of neural assemblies involved in accessing meaning of long samples of speech.


Cerebral Cortex | 2012

Interaction between Bottom-up Saliency and Top-down Control: How Saliency Maps Are Created in the Human Brain

Lucia Melloni; Sara van Leeuwen; Arjen Alink; Notger G. Müller

Whether an object captures our attention depends on its bottom-up salience, that is, how different it is compared with its neighbors, and top-down control, that is, our current inner goals. At which neuronal stage they interact to guide behavior is still unknown. In a functional magnetic resonance imaging study, we found evidence for a hierarchy of saliency maps in human early visual cortex (V1 to hV4) and identified where bottom-up saliency interacts with top-down control: V1 represented pure bottom-up signals, V2 was only responsive to top-down modulations, and in hV4 bottom-up saliency and top-down control converged. Two distinct cerebral networks exerted top-down control: distractor suppression engaged the left intraparietal sulcus, while target enhancement involved the frontal eye field and lateral occipital cortex. Hence, attentional selection is implemented in integrated maps in visual cortex, which provide precise topographic information about target-distractor locations thus allowing for successful visual search.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Subjective and objective learning effects dissociate in space and in time.

Caspar M. Schwiedrzik; Wolf Singer; Lucia Melloni

Perceptual learning not only improves sensitivity, but it also changes our subjective experience. However, the question of how these two learning effects relate is largely unexplored. Here we investigate how subjects learn to see initially indiscriminable metacontrast-masked shapes. We find that sensitivity and subjective awareness increase with training. However, sensitivity and subjective awareness dissociate in space: Learning effects on performance are lost when the task is performed at an untrained location in another quadrant, whereas learning effects on subjective awareness are maintained. This finding indicates that improvements in shape sensitivity involve visual areas up to V4, whereas changes in subjective awareness involve other brain regions. Furthermore, subjective awareness dissociates from sensitivity in time: In an early phase of perceptual learning, subjects perform above chance on trials that they rate as subjectively invisible. Later, this phenomenon disappears. Subjective awareness is thus neither necessary nor sufficient for achieving above-chance objective performance.


Cerebral Cortex | 2013

Repetition Suppression versus Enhancement—It's Quantity That Matters

Notger G. Müller; Hendrik Strumpf; M. Scholz; Bernhard Baier; Lucia Melloni

Upon repetition, certain stimuli induce reduced neural responses (i.e., repetition suppression), whereas others evoke stronger signals (i.e., repetition enhancement). It has been hypothesized that stimulus properties (e.g., visibility) determine the direction of the repetition effect. Here, we show that the very same stimuli can induce both repetition suppression and enhancement, whereby the only determining factor is the number of repetitions. Repeating the same, initially novel low-visible pictures of scenes for up to 5 times enhanced the blood oxygen level-dependent (BOLD) response in scene-selective areas, that is, the parahippocampal place area (PPA) and the transverse occipital sulcus (TOS), presumably reflecting the strengthening of the internal representation. Additional repetitions (6-9) resulted in progressively attenuated neural responses indicating a more efficient representation of the now familiar stimulus. Behaviorally, repetition led to increasingly faster responses and higher visibility ratings. Novel scenes induced the largest BOLD response in the PPA and also higher activity in yet another scene-selective region, the retrospenial cortex (RSC). We propose that 2 separable processes modulate activity in the PPA: one process optimizes the internal stimulus representation and involves TOS and the other differentiates between familiar and novel scenes and involves RSC.

Collaboration


Dive into the Lucia Melloni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenio Rodriguez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Wibral

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge