Lucia Muggia
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucia Muggia.
Studies in Mycology | 2009
Conrad L. Schoch; Pedro W. Crous; Johannes Z. Groenewald; Eric W.A. Boehm; T. Burgess; J. de Gruyter; G.S. de Hoog; L. J. Dixon; Martin Grube; Cécile Gueidan; Yukio Harada; Satoshi Hatakeyama; Kazuyuki Hirayama; Tsuyoshi Hosoya; Sabine M. Huhndorf; Kevin D. Hyde; E.B.G. Jones; Jan Kohlmeyer; Åsa Kruys; Yan Li; R. Lücking; H.T. Lumbsch; Ludmila Marvanová; J.S. Mbatchou; A. H.. McVay; Andrew N. Miller; G.K. Mugambi; Lucia Muggia; Matthew P. Nelsen; P. Nelson
We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon.
Fungal Diversity | 2013
Kevin D. Hyde; E. B. Gareth Jones; Jian Kui Liu; Hiran A. Ariyawansa; Eric Boehm; Saranyaphat Boonmee; Uwe Braun; Putarak Chomnunti; Pedro W. Crous; Dong Qin Dai; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Francesco Doveri; Singang Hongsanan; Ruvishika S. Jayawardena; James D. Lawrey; Yan Mei Li; Yong Xiang Liu; Robert Lücking; Jutamart Monkai; Lucia Muggia; Matthew P. Nelsen; Ka-Lai Pang; Rungtiwa Phookamsak; Indunil C. Senanayake; Carol A. Shearer; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala
Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
Studies in Mycology | 2009
C. Ruibal; Cécile Gueidan; Laura Selbmann; Anna A. Gorbushina; Pedro W. Crous; Johannes Z. Groenewald; Lucia Muggia; Martin Grube; Daniela Isola; Conrad L. Schoch; J.T. Staley; François Lutzoni; G.S. de Hoog
The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation.
Fungal Diversity | 2014
Nalin N. Wijayawardene; Pedro W. Crous; Paul M. Kirk; David L. Hawksworth; Saranyaphat Boonmee; Uwe Braun; Dong Qin Dai; Melvina J. D’souza; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Singang Hongsanan; E. B. Gareth Jones; Johannes Z. Groenewald; Ruvishika S. Jayawardena; James D. Lawrey; Jian Kui Liu; Robert Lücking; Hugo Madrid; Dimuthu S. Manamgoda; Lucia Muggia; Matthew P. Nelsen; Rungtiwa Phookamsak; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala; Dhanushka N. Wanasinghe; Saowanee Wikee; Ying Zhang; André Aptroot
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.
European Journal of Phycology | 2011
Holger Thüs; Lucia Muggia; Sergio Pérez-Ortega; Sergio E. Favero-Longo; Suzanne Joneson; Heath E. O’Brien; Matthew P. Nelsen; Rhinaixa Duque-Thüs; Martin Grube; Thomas Friedl; Juliet Brodie; Carrie J. Andrew; Robert Lücking; François Lutzoni; Cécile Gueidan
The Verrucariaceae (Ascomycota) is a family of mostly lichenized fungi with a unique diversity of algal symbionts, including some algae that are rarely or never associated with other lichens. The phylogenetic position of most of these algae has not yet been studied and, because morphology-based identifications can often be misleading, molecular data is necessary to revisit their identity and to explore patterns of association between fungal and algal partners. For this reason, the diversity of photobionts in this lichen family was investigated using molecular markers (rbcL and nuSSU) amplified from DNA extracts of lichen thalli and cultured isolates. Although a single algal genus, Diplosphaera (Trebouxiophyceae), was associated with 12 out of the 17 sampled genera of Verrucariaceae, representatives of eight other genera in five orders of the Chlorophyta and one genus in the Xanthophyceae also form lichen associations with members of the family. Fungal genera with simple crustose thalli (e.g. Hydropunctaria, Wahlenbergiella, Bagliettoa) use a high diversity and unusual selection of photobionts. In contrast, fungal genera with more complex thalli (e.g. Placidium, Dermatocarpon) tend to have lower photobiont diversity. Habitat requirements and phylogenetic histories are both partly reflected in the observed patterns of associations between lichenized fungi from the family Verrucariaceae and their photobionts.
Studies in Mycology | 2009
Matthew P. Nelsen; R. Lücking; Martin Grube; J.S. Mbatchou; Lucia Muggia; E. Rivas Plata; H.T. Lumbsch
We present a revised phylogeny of lichenised Dothideomyceta (Arthoniomycetes and Dothideomycetes) based on a combined data set of nuclear large subunit (nuLSU) and mitochondrial small subunit (mtSSU) rDNA data. Dothideomyceta is supported as monophyletic with monophyletic classes Arthoniomycetes and Dothideomycetes; the latter, however, lacking support in this study. The phylogeny of lichenised Arthoniomycetes supports the current division into three families: Chrysothrichaceae (Chrysothrix), Arthoniaceae (Arthonia s. l., Cryptothecia, Herpothallon), and Roccellaceae (Chiodecton, Combea, Dendrographa, Dichosporidium, Enterographa, Erythrodecton, Lecanactis, Opegrapha, Roccella, Roccellographa, Schismatomma, Simonyella). The widespread and common Arthonia caesia is strongly supported as a (non-pigmented) member of Chrysothrix. Monoblastiaceae, Strigulaceae, and Trypetheliaceae are recovered as unrelated, monophyletic clades within Dothideomycetes. Also, the genera Arthopyrenia (Arthopyreniaceae) and Cystocoleus and Racodium (Capnodiales) are confirmed as Dothideomycetes but unrelated to each other. Mycomicrothelia is shown to be unrelated to Arthopyrenia s.str., but is supported as a monophyletic clade sister to Trypetheliaceae, which is supported by hamathecium characters. The generic concept in several groups is in need of revision, as indicated by non-monophyly of genera, such as Arthonia, Astrothelium, Cryptothecia, Cryptothelium, Enterographa, Opegrapha, and Trypethelium in our analyses.
Mycological Progress | 2008
Lucia Muggia; Martin Grube; Mauro Tretiach
Mycobiont and photobiont genetic diversity was investigated in four taxa of the Tephromela atra complex, which differ in ecology and substratum preference (from siliceous rocks, limestone to bark), and are differently interpreted by taxonomists. Phylogenetic analyses were performed using mycobiont nuclear ITS, beta tubulin and homologous polyketide synthase gene (PKS) sequences obtained from freshly collected material sampled from the Mediterranean region to the Southern Alps. The silicicolous samples from the Alps form a basal lineage of the entire complex, and despite the morphological similarity, they do not form a monophyletic group with the Mediterranean samples. No resolution was found among the calcicolous and the silicicolous taxa from Mediterranean habitats, which are traditionally segregated at variety or species level. The epiphytic taxon, although nested with the other ecotypes, splits in two well-supported lineages. Among the four taxa, Tephromela grumosa is the only morphologically, chemically and genetically distinct taxon. However, it is also nested in the large T. atra complex. Phylogenetic analysis of photobionts ITS sequences revealed that thalli from the Mediterranean region are associated with two distinct lineages of Trebouxia, but the lineages are not correlated with substrate or mycobiont phenotype. The thalli from the Alps are exclusively associated with T. simplex, suggesting a protracted isolation from the other lineages.
FEMS Microbiology Ecology | 2013
Lucia Muggia; Lucie Vančurová; Pavel Škaloud; Ondrej Peksa; Mats Wedin; Martin Grube
The development of characteristic thallus structures in lichen-forming fungi requires the association with suitable photoautotrophic partners. Previous work suggests that fungi have a specific range of compatible photobionts and that selected algal strains are also correlated with the habitat conditions. We selected the rock-inhabiting crust lichen Protoparmeliopsis muralis, which exhibits high flexibility in algal associations. We present a geographically extended and detailed analysis of algal association patterns including thalli which host superficial algal colonies. We sampled 17 localities in Europe, and investigated the photobiont genotypic diversity within and between thalli and compared the diversity of intrathalline photobionts and externally associate algal communities between washed and unwashed thalli by single-strand conformation polymorphism analyses and ITS sequence data. The results show that (1) photobiont population within the lichen thalli is homogeneous; (2) multiple photobiont genotypes occur within single areoles and lobes of individual lichens; and (3) algal communities which superficially colonize the lichen thalli host taxa known as photobionts in unrelated lichens. Photobiont association patterns are extremely flexible in this ecologically versatile crust-forming lichen. We suggest that lichen surfaces represent a potential temporary niche for free-living stages of lichen photobionts, which could facilitate the establishment of further lichens in the proximal area.
Studies in Mycology | 2008
S. Harutyunyan; Lucia Muggia; Martin Grube
We present a phylogenetic study of black fungi in lichens, primarily focusing on saxicolous samples from seasonally arid habitats in Armenia, but also with examples from other sites. Culturable strains of lichen-associated black fungi were obtained by isolation from surface-washed lichen material. Determination is based on ITS rDNA sequence data and comparison with published sequences from other sources. The genera Capnobotryella, Cladophialophora, Coniosporium, Mycosphaerella, and Rhinocladiella were found in different lichen species, which showed no pathogenic symptoms. A clade of predominantly lichen-associated strains is present only in Rhinocladiella, whereas samples of the remaining genera were grouped more clearly in clades with species from other sources. The ecology of most-closely related strains indicates that Capnobotryella and Coniosporium, and perhaps also Rhinocladiella strains opportunistically colonise lichens. In contrast, high sequence divergence in strains assigned to Mycosphaerella could indicate the presence of several lichen-specific species with unknown range of hosts or habitats, which are distantly related to plant-inhabitants. Similar applies to Cladophialophora strains, where the closest relatives of the strains from lichens are serious human pathogens.
Annals of Botany | 2014
Lucia Muggia; Sergio Pérez-Ortega; Theodora Kopun; Günther Zellnig; Martin Grube
BACKGROUND AND AIMS The integrity and evolution of lichen symbioses depend on a fine-tuned combination of algal and fungal genotypes. Geographically widespread species complexes of lichenized fungi can occur in habitats with slightly varying ecological conditions, and it remains unclear how this variation correlates with symbiont selectivity patterns in lichens. In an attempt to address this question, >300 samples were taken of the globally distributed and ecologically variable lichen-forming species complex Tephromela atra, together with closely allied species, in order to study genetic diversity and the selectivity patterns of their photobionts. METHODS Lichen thalli of T. atra and of closely related species T. grumosa, T. nashii and T. atrocaesia were collected from six continents, across 24 countries and 62 localities representing a wide range of habitats. Analyses of genetic diversity and phylogenetic relationships were carried out both for photobionts amplified directly from the lichen thalli and from those isolated in axenic cultures. Morphological and anatomical traits were studied with light and transmission electron microscopy in the isolated algal strains. KEY RESULTS Tephromela fungal species were found to associate with 12 lineages of Trebouxia. Five new clades demonstrate the still-unrecognized genetic diversity of lichen algae. Culturable, undescribed lineages were also characterized by phenotypic traits. Strong selectivity of the mycobionts for the photobionts was observed in six monophyletic Tephromela clades. Seven Trebouxia lineages were detected in the poorly resolved lineage T. atra sensu lato, where co-occurrence of multiple photobiont lineages in single thalli was repeatedly observed. CONCLUSIONS Low selectivity apparently allows widespread lichen-forming fungi to establish successful symbioses with locally adapted photobionts in a broader range of habitats. This flexibility might correlate with both lower phylogenetic resolution and evolutionary divergence in species complexes of crustose lichen-forming fungi.
Collaboration
Dive into the Lucia Muggia's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs