Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Račková is active.

Publication


Featured researches published by Lucia Račková.


Journal of Inflammation | 2007

Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids

Lucia Račková; Marek Oblozinsky; Daniela Košt'álová; Viktor Kettmann; Lydia Bezakova

Roots and stem-bark of Mahonia aquifolium (Oregon grape) (Berberidaceae) are effectively used in the treatment of skin inflammatory conditions.In the present study, the effect of Mahonia aquifolium crude extract and its two representative alkaloid fractions containing protoberberine and bisbenzylisoquinoline (BBIQ) alkaloids on activity of 12-lipoxygenase (12-LOX), was studied. The reactivity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH), a free stable radical, was evaluated to elucidate the rate of possible lipid-derived radical scavenging in the mechanism of the enzyme inhibition.The results indicate that although the direct radical scavenging mechanism cannot be ruled out in the lipoxygenase inhibition by Mahonia aquifolium and its constituents, other mechanisms based on specific interaction between enzyme and alkaloids could play the critical role in the lipoxygenase inhibition rather than non-specific reactivity with free radicals.


Free Radical Research | 2010

Natural and synthetic antioxidants: An updated overview

Agnieszka Augustyniak; Grzegorz Bartosz; Ana Cipak; Gunars Duburs; Lubica Horakova; Wojciech Łuczaj; Magdalena Majekova; Andreani Odysseos; Lucia Račková; Elżbieta Skrzydlewska; Milan Stefek; Miriam Strosova; Gunars Tirzitis; Petras Rimantas Venskutonis; Jana Viskupicova; Panagiota S. Vraka; Neven Žarković

Abstract The current understanding of the complex role of ROS in the organism and pathological sequelae of oxidative stress points to the necessity of comprehensive studies of antioxidant reactivities and interactions with cellular constituents. Studies of antioxidants performed within the COST B-35 action has concerned the search for new natural antioxidants, synthesis of new antioxidant compounds and evaluation and elucidation of mechanisms of action of both natural and synthetic antioxidants. Representative studies presented in the review concern antioxidant properties of various kinds of tea, the search for new antioxidants of herbal origin, modification of tocopherols and their use in combination with selenium and properties of two promising groups of synthetic antioxidants: derivatives of stobadine and derivatives of 1,4-dihydropyridine.


Natural Product Research | 2007

Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin

Lucia Račková; Viera Jančinová; M. Petríková; Katarína Drábiková; Radomír Nosáľ; Milan Stefek; Daniela Košťálová; Naďa Prónayová; Mária Kováčová

The antiradical activity, protective effect against lipid peroxidation of liposomal membrane, and inhibitory effect on whole blood reactive oxygen species (ROS) liberation of Glycyrrhiza glabra crude extract and glycyrrhizin, its major compound, were assessed. The liquorice extract showed significant activity in all the three assay systems used in a dose dependent manner. It displayed remarkable reactivity with free stable 1,1′-diphenyl-2-picrylhydrazyl (DPPH) radical, inhibitory efficacy in peroxidatively damaged unilamellar dioleoyl phosphatidylcholine (DOPC) liposomes, and inhibition of ROS chemiluminescence, generated by whole blood, induced by both receptor-bypassing stimuli (PMA) and receptor operating stimuli (Opz) in the ranking order of stimuli PMA> Opz. These activities may be attributed to phenolic antioxidants involving isoflavan derivatives, coumarins and chalcones. Nonetheless, triterpene saponin glycyrrhizin exhibited no efficacy in the system of DPPH reaction and peroxidation of liposomal membrane, and negligible inhibition of chemiluminescence generated by inflammatory cells. These results indicate that the mechanism of anti-inflammatory effect of glycyrrhizin most probably does not involve ROS and this major constituent is not responsible for the inhibition effects of liquorice extract on neutrophil functions.


Redox Report | 2006

The combined luminol/isoluminol chemiluminescence method for differentiating between extracellular and intracellular oxidant production by neutrophils

Viera Jančinová; Katarína Drábiková; R. Nosál; Lucia Račková; Magdalena Majekova; Dagmar Holománová

Abstract To address the question why isoluminol, but not luminol, failed to detect oxidants produced intracellularly, differences between these luminophores were investigated with respect to physicochemical parameters and the character of chemiluminescence signal. Our results showed the isoluminol molecule to be more polar, more hydrophilic and possessing lower ability to form intramolecular bonds than the luminol molecule. Therefore, isoluminol: (i) only slightly pervaded biological membranes; (ii) depended essentially on extracellular peroxidase; (iii) did not produce chemiluminescence in the presence of extracellular scavengers; and (iv) it could be considered a specific detector of extracellular radicals. On the other hand, the physicochemical parameters of luminol and partial resistance of its chemiluminescence to the effect of extracellular inhibitors proved the lipo/hydrophilic character of this luminophore and thus its ability to interact with radicals both outside and inside of cells. The luminol chemiluminescence measured in the presence of extracellular scavengers and the isoluminol chemiluminescence were used with the intention to differentiate the effects of two antihistamine drugs on intra- and extracellular radical formation. In activated human neutrophils, brompheniramine inhibited the extracellular and potentiated the intracellular part of chemiluminescence signal, whereas a reducing effect of loratadine was observed in both compartments.


Redox Report | 2002

Structural aspects of antioxidant activity of substituted pyridoindoles

Lucia Račková; Milan Stefek; Magdalena Majekova

Abstract Stobadine and its two structural analogues, dehydrostobadine and N-acetylated stobadine were used to examine how structural alteration in the close proximity of the indolic nitrogen would influence the antioxidant activity of the substituted pyridoindoles. The compounds were tested for their efficiency to scavenge stable free radicals of α,α′-diphenyl-β-picrylhydrazyl as well as for their ability to prevent 2,2′-azobis-(2-amidinopropane)hydrochloride induced peroxidation of dioleoyl phosphatidylcholine liposomes. The results proved that the substituted pyridoindoles can act as potent scavengers of peroxyl radicals both in aqueous and lipid phases, the antioxidant activity being comparable with that of Trolox. Structural changes in the proximity of the indolic nitrogen were found crucial for the radical scavenging efficiency: aromatisation of the pyridoindole skeleton in dehydrostobadine lowered the antioxidant activity, while acetylation of the indolic nitrogen completely abolished the ability to scavenge peroxyl radicals. The results are in agreement with the notion that the antioxidant activity of stobadine and of the related pyridoindoles may be mediated via the indolic nitrogen centre. When stobadine and Trolox were present simultaneously in liposomal incubations, Trolox spared stobadine in a dose-dependent manner; a direct interaction of Trolox with stobadinyl radical appears to be a plausible explanation with possible consequences for the antioxidant capacity of stobadine under in vivo conditions, where re-cycling of stobadine by vitamin E might occur.


Free Radical Research | 2009

Metabolism-induced oxidative stress is a mediator of glucose toxicity in HT22 neuronal cells

Lucia Račková; Vladimir Snirc; Tobias Jung; Milan Stefek; Çimen Karasu; Tilman Grune

Oxidative stress has been widely considered as a key player in the adverse effects of hyperglycaemia to various tissues, including neuronal cells. This study examined the participation of oxidative stress in injurious effects of high glucose on HT22 cells along with the activity of proteasome, a proteolytic system responsible for degradation of oxidized proteins. Although 10-fold glucose concentration caused non-significant viability changes, a significant reduction of cell proliferation was found. Moreover, the cell morphology was also altered. These changes were followed by an enhancement of intracellular ROS generation, however without any significant boost of the carbonyl group concentration in proteins. Correspondingly, only a slight decline in the 20S proteasome activity was found in high-glucose-treated cells. On the other hand, substances affecting glucose metabolism or antioxidants partially preserved the oxidative stress in high glucose treated cells. In summary, these results highlight the role of metabolic oxidative stress in hyperglycaemia affecting neurons.


Archives of Biochemistry and Biophysics | 2013

Cholesterol load of microglia: contribution of membrane architecture changes to neurotoxic power?

Lucia Račková

Considerable evidence provides a link between hypercholesterolemia and ageing-related neurodegenerative diseases. The present study was aimed to provide a complex view on the effects caused by cholesterol- and cholesterol 5α,6α-epoxide-load in microglia, with particular emphasize put on membrane proteins. Prolonged application of oxysterol significantly enhanced LPS-stimulated association of cytosolic NADPH-oxidase factor p47[phox] with detergent-resistant microdomains (DRMs) in BV-2 cells. Although the treatment with both sterols does not influence the portion of CD36 receptor in DRMs, its apparent surface-cellular expression was altered. Even though sterol-treatment potentiated oxidant production by microglia, as well as their phagocytosis, these effects, however, appeared to be independent of cholesterol profusion in the membrane. In addition, oxysterol-treatment resulted in a loss of DRMs-associated activity of 26S proteasome, the protease critically regulating both protein homeostasis and immune signaling in microglia. Oxysterol relatively ameliorated cytotoxic effects of inflammed microglia on co-cultured PC12 cells. The outcomes of this study suggest that cholesterol and cholesterol oxides can differentially modulate microglia resulting either in impairment of their immune functionalities or enhanced neurotoxic power. Moreover, these findings shed light on possible complexity of this effect, produced by simultaneous affection of the levels, distribution and function of the critical proteins within microglial membrane compartments.


International Immunopharmacology | 2009

The effects of H1-antihistamines on the nitric oxide production by RAW 264.7 cells with respect to their lipophilicity

Jana Králová; Lucia Račková; Michaela Pekarova; Lukáš Kubala; Radomír Nosáľ; Viera Jančinová; Milan Číž; Antonín Lojek

H1-antihistamines are known to be important modulators of inflammatory response. However, the information about the influence of these drugs on reactive nitrogen species generation is still controversial. The main aim of the present study was to investigate the effects of selected H1-antihistamines on nitric oxide production by lipopolysaccharide-stimulated murine macrophages RAW 264.7, measured as changes in inducible nitric oxide synthase (iNOS) protein expression in cell lysates by Western blotting and nitrite formation in cell supernatants using the Griess reaction. In pharmacological non-toxic concentrations, H1-antihistamines significantly inhibited nitrite accumulation that was not caused by the scavenging ability of drugs against nitric oxide, measured amperometrically. The degree of inhibition of nitrite accumulation positively correlated with the degree of tested lipophilicity, measured by reversed-phase thin layer chromatography. Furthermore, H1-antihistamines differentially modulated the iNOS protein expression. In conclusion, as was shown in this study, the modulation of nitric oxide production could be caused by the downregulation of iNOS protein expression and/or the iNOS protein activity.


Chemico-Biological Interactions | 2017

Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases

Petronela Zizkova; Milan Stefek; Lucia Račková; Marta Soltesova Prnova; Lubica Horakova

A set of O-substituted quercetin derivatives was prepared with the aim to optimize bioavailability and redox properties of quercetin, a known agent with multiple health beneficial effects. Electron-acceptor/-donor properties of the agents were evaluated theoretically by quantum chemical calculations and by experimental methods in cell-free model systems (2,2-diphenyl-1-picrylhydrazyl (DPPH) test, the ferric reducing ability of plasma (FRAP), peroxynitrite scavenging, protein-thiol oxidation) and in cellular systems of fibroblasts, microglials and cancer lines. The order of individual antioxidant effects varied dependently on the system used. In cellular systems, quercetin derivatives were shown to be better antioxidants compared to quercetin. Monochloropivaloylquercetin (CPQ), monoacetylferuloylquercetin (MAFQ) and chloronaphthoquinonequercetin (CHNQ) showed a prominent inhibitory effect on the key enzymes involved in diabetic complications, aldose reductase and α-glucosidase, suggesting their promising therapeutic application. In the cellular models of BHNF-3 fibroblasts, microglial cell line BV-2, colorectal cancer cell lines HCT-116 and HT-29, CHNQ and CPQ were studied for their cytotoxic, antiproliferative and antiinflammatory properties. In the rat model, CHNQ attenuated colon inflammation induced by acetic acid. In summary, our studies revealed CPQ and CHNQ as potential remedies of chronic age-related metabolic or inflammatory diseases, including diabetes and neurodegenerations. Furthermore, CHNQ represents a novel promising agent exerting its anticancer effect through induction of oxidative stress-dependent cell death.


Medicinal Chemistry | 2011

Novel Hexahydropyridoindole Derivative as Prospective Agent Against Oxidative Damage in Pancreatic βCells

Lucia Račková; Ahmet Cumaoglu; E. Umit Bagrιacιk; Milan Stefek; Pierre Maechler; Çimen Karasu

The potential protective effect of (±)-8-methoxy-1,3,4,4a,5,9b-hexahydro-pyrido[4,3-b]indole-2-carboxylic acid ethyl ester (II) was assessed against hydrogen peroxide (H2O2)-cytotoxicity in rat pancreatic INS-1E β cells and compared with the effect of the related pyridoindole, stobadine (I), a promising indole-type reference antioxidant. Only pre-treatment with the compound (II) led to a significant preservation of the metabolic and secretory functions of the cells exposed to H2O2. The caspase-9 and -3 activities, as well as the early apoptotic changes of plasma membrane, were suppressed in the cells pre-incubated with both of compounds tested. However, only pyridoindole (II) inhibited profoundly the time-delayed apoptotic changes, These results suggest that pyridoindole (II) characterized by enhanced intrinsic antioxidant efficiency, may protect β cells against cytotoxic effects of H2O2, involved in the development of both type 1 and type 2 diabetes.

Collaboration


Dive into the Lucia Račková's collaboration.

Top Co-Authors

Avatar

Milan Stefek

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Škandík

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nataša Mrvová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Viera Jančinová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lubica Horakova

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marcela Kuniaková

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

R. Nosál

Slovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge