Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucía Ramírez is active.

Publication


Featured researches published by Lucía Ramírez.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Elena Fernández-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Timothy Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Ryu Jae San; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; José L. Lavín; José A. Oguiza

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Applied and Environmental Microbiology | 2000

Genetic Linkage Map of the Edible Basidiomycete Pleurotus ostreatus

Luis M. Larraya; Gúmer Pérez; Enrique Ritter; Antonio G. Pisabarro; Lucía Ramírez

ABSTRACT We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes ofP. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus.


Applied and Environmental Microbiology | 2012

Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged- and solid-state fermentation cultures.

Raúl Castanera; Gúmer Pérez; Alejandra Omarini; Manuel Alfaro; Antonio G. Pisabarro; Vincenza Faraco; Antonella Amore; Lucía Ramírez

ABSTRACT The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors.


Applied and Environmental Microbiology | 2002

Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus.

Luis M. Larraya; Eneko Idareta; Dani Arana; Enrique Ritter; Antonio G. Pisabarro; Lucía Ramírez

ABSTRACT Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information.


Applied and Environmental Microbiology | 2003

Mapping of Genomic Regions (Quantitative Trait Loci) Controlling Production and Quality in Industrial Cultures of the Edible Basidiomycete Pleurotus ostreatus

Luis M. Larraya; Mikel Alfonso; Antonio G. Pisabarro; Lucía Ramírez

ABSTRACT Industrial production of the edible basidiomycete Pleurotus ostreatus (oyster mushroom) is based on a solid fermentation process in which a limited number of selected strains are used. Optimization of industrial mushroom production depends on improving the culture process and breeding new strains with higher yields and productivities. Traditionally, fungal breeding has been carried out by an empirical trial and error process. In this study, we used a different approach by mapping quantitative trait loci (QTLs) controlling culture production and quality within the framework of the genetic linkage map of P. ostreatus. Ten production traits and four quality traits were studied and mapped. The production QTLs identified explain nearly one-half of the production variation. More interestingly, a single QTL mapping to the highly polymorphic chromosome VII appears to be involved in control of all the productivity traits studied. Quality QTLs appear to be scattered across the genome and to have less effect on the variation of the corresponding traits. Moreover, some of the new hybrid strains constructed in the course of our experiments had production or quality values higher than those of the parents or other commercial strains. This approach opens the possibility of marker-assisted selection and breeding of new industrial strains of this fungus.


Current Genetics | 1999

Identification of incompatibility alleles and characterisation of molecular markers genetically linked to the A incompatibility locus in the white rot fungus Pleurotus ostreatus.

Luis M. Larraya; María M. Peñas; Gúmer Pérez; Cruz Santos; Enrique Ritter; Antonio G. Pisabarro; Lucía Ramírez

Pleurotus ostreatus is a hetertothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Although this mechanism is well accepted, there is a lack of knowledge about its molecular basis, as the incompatibility loci have not been cloned and sequenced. As a first step towards the elucidation of the molecular structure of the A-type incompatibility locus, molecular markers have been isolated which correspond to genomic sequences present in different strains of P. ostreatus but not in other higher basidiomycetae. These markers reveal single-copy genetic regions in which some degree of genetic variability can be detected.


Fungal Genetics and Biology | 2014

Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH.

Elena Fernández-Fueyo; Raúl Castanera; Francisco J. Ruiz-Dueñas; María F. López-Lucendo; Lucía Ramírez; Antonio G. Pisabarro; Ángel T. Martínez

Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and mnp5 were the only peroxidase genes upregulated under alkaline pH conditions. The differences in the transcription levels of the peroxidase genes when the culture temperature and pH parameters were changed suggest an adaptive expression according to environmental conditions. Finally, the intracellular proteome was analyzed, under the same conditions used in the secretomic analysis, and the protein product of the highly-transcribed gene mnp3 was detected. Therefore, it was concluded that the absence of MnP3 from the secretome of the P. ostreatus lignocellulose cultures was related to impaired secretion.


Bioresource Technology | 2013

Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts

Alejandra Parenti; Elaia Muguerza; Amaia Redin Iroz; Alejandra Omarini; Enma Conde; Manuel Alfaro; Raúl Castanera; Francisco Santoyo; Lucía Ramírez; Antonio G. Pisabarro

The purpose of this work was to explore the use of polluted water effluents from wheat straw using industries as inducers of lignocellulolytic enzymatic activities in cultures of white rot basidiomycetes. For this purpose, we studied the effect of a wheat straw water extract on the evolution of the laccase activity recovered from submerged cultures of Pleurotus ostreatus made in different media and under various culture conditions. Our results demonstrated an accumulative induction effect in all the cultures and conditions tested. This induction is parallel to changes in the laccase electrophoretic profiles recovered from the culture supernatants. The isoenzyme that appeared to be mainly responsible for the laccase activity under these conditions was laccase 10, as confirmed by sequencing the induced protein. These results support the idea of using wheat straw effluents as inducers in liquid cultures of P. ostreatus mycelia for the production of ligninolytic enzymatic cocktails.


Applied and Environmental Microbiology | 2001

Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus

Luis M. Larraya; Gúmer Pérez; Iñaki Iribarren; Juan A. Blanco; Mikel Alfonso; Antonio G. Pisabarro; Lucía Ramírez

ABSTRACT The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at thematB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matBlocus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matAalleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus.


PLOS Genetics | 2016

Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

Raúl Castanera; Leticia López-Varas; Alessandra Borgognone; Kurt LaButti; Alla Lapidus; Jeremy Schmutz; Jane Grimwood; Gúmer Pérez; Antonio G. Pisabarro; Igor V. Grigoriev; Jason E. Stajich; Lucía Ramírez

Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.

Collaboration


Dive into the Lucía Ramírez's collaboration.

Top Co-Authors

Avatar

Antonio G. Pisabarro

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Raúl Castanera

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Gúmer Pérez

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

José A. Oguiza

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

José L. Lavín

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Luis M. Larraya

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

María M. Peñas

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Francisco J. Ruiz-Dueñas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Elena Fernández-Fueyo

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

María F. López-Lucendo

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge