Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Stefanini is active.

Publication


Featured researches published by Lucia Stefanini.


Blood | 2009

CalDAG-GEFI is at the nexus of calcium-dependent platelet activation

Lucia Stefanini; R. Claire Roden; Wolfgang Bergmeier

The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.


Journal of Thrombosis and Haemostasis | 2009

Novel molecules in calcium signaling in platelets

Wolfgang Bergmeier; Lucia Stefanini

Summary.  A rise in the intracellular calcium (Ca2+) concentration is a major component of the signaling mechanisms regulating platelet function in thrombosis and hemostasis. Previous studies, however, failed to identify many key molecules regulating Ca2+ signaling in platelets. Here, we review recent findings, which identified CalDAG‐GEFI as a critical Ca2+ sensor that links increases in intracellular Ca2+ to integrin activation, TxA2 formation, and granule release in stimulated platelets. Furthermore, we summarize work that lead to the discovery of STIM1 and Orai1 as key regulators of store‐operated calcium entry (SOCE) in platelets. A short discussion on the usefulness of each molecule as a potential new target for antiplatelet therapy is included.


Blood | 2010

p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo.

Matthias Canault; Daniel Duerschmied; Alexander Brill; Lucia Stefanini; Daphne Schatzberg; Stephen M. Cifuni; Wolfgang Bergmeier; Denisa D. Wagner

Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-alpha and GPV. We recently demonstrated that tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37 degrees C or 22 degrees C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.


Blood | 2011

The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy

Moritz Stolla; Lucia Stefanini; R. Claire Roden; Massiel Chavez; Jessica Hirsch; Teshell K. Greene; Timothy D. Ouellette; Sean F. Maloney; Scott L. Diamond; Mortimer Poncz; Donna S. Woulfe; Wolfgang Bergmeier

Two major pathways contribute to Ras-proximate-1-mediated integrin activation in stimulated platelets. Calcium and diacyglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI, RasGRP2) mediates the rapid but reversible activation of integrin αIIbβ3, while the adenosine diphosphate receptor P2Y12, the target for antiplatelet drugs like clopidogrel, facilitates delayed but sustained integrin activation. To establish CalDAG-GEFI as a target for antiplatelet therapy, we compared how each pathway contributes to thrombosis and hemostasis in mice. Ex vivo, thrombus formation at arterial or venous shear rates was markedly reduced in CalDAG-GEFI(-/-) blood, even in the presence of exogenous adenosine diphosphate and thromboxane A(2). In vivo, thrombosis was virtually abolished in arterioles and arteries of CalDAG-GEFI(-/-) mice, while small, hemostatically active thrombi formed in venules. Specific deletion of the C1-like domain of CalDAG-GEFI in circulating platelets also led to protection from thrombus formation at arterial flow conditions, while it only marginally increased blood loss in mice. In comparison, thrombi in the micro- and macrovasculature of clopidogrel-treated wild-type mice grew rapidly and frequently embolized but were hemostatically inactive. Together, these data suggest that inhibition of the catalytic or the C1 regulatory domain in CalDAG-GEFI will provide strong protection from athero-thrombotic complications while maintaining a better safety profile than P2Y12 inhibitors like clopidogrel.


Journal of Clinical Investigation | 2015

RASA3 is a critical inhibitor of RAP1-dependent platelet activation

Lucia Stefanini; David S. Paul; Raymond F. Robledo; E. Ricky Chan; Todd M. Getz; Robert A. Campbell; Daniel O. Kechele; Caterina Casari; Raymond Piatt; Kathleen M. Caron; Nigel Mackman; Andrew S. Weyrich; Matthew C. Parrott; Yacine Boulaftali; Mark D. Adams; Luanne L. Peters; Wolfgang Bergmeier

The small GTPase RAP1 is critical for platelet activation and thrombus formation. RAP1 activity in platelets is controlled by the GEF CalDAG-GEFI and an unknown regulator that operates downstream of the adenosine diphosphate (ADP) receptor, P2Y12, a target of antithrombotic therapy. Here, we provide evidence that the GAP, RASA3, inhibits platelet activation and provides a link between P2Y12 and activation of the RAP1 signaling pathway. In mice, reduced expression of RASA3 led to premature platelet activation and markedly reduced the life span of circulating platelets. The increased platelet turnover and the resulting thrombocytopenia were reversed by concomitant deletion of the gene encoding CalDAG-GEFI. Rasa3 mutant platelets were hyperresponsive to agonist stimulation, both in vitro and in vivo. Moreover, activation of Rasa3 mutant platelets occurred independently of ADP feedback signaling and was insensitive to inhibitors of P2Y12 or PI3 kinase. Together, our results indicate that RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI/RAP1 signaling and suggest that P2Y12 signaling is required to inhibit RASA3 and enable sustained RAP1-dependent platelet activation and thrombus formation at sites of vascular injury. These findings provide insight into the antithrombotic effect of P2Y12 inhibitors and may lead to improved diagnosis and treatment of platelet-related disorders.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Rap1-Rac1 Circuits Potentiate Platelet Activation

Lucia Stefanini; Yacine Boulaftali; Timothy D. Ouellette; Michael Holinstat; Laurent Desire; Bertrand Leblond; Patrick Andre; Pamela B. Conley; Wolfgang Bergmeier

Objective—The goal of this study was to investigate the potential crosstalk between Rap1 and Rac1, 2 small GTPases central to platelet activation, particularly downstream of the collagen receptor GPVI. Methods and Results—We compared the activation response of platelets with impaired Rap signaling (double knock-out; deficient in both the guanine nucleotide exchange factor, CalDAG-GEFI, and the Gi-coupled receptor for ADP, P2Y12), to that of wild-type platelets treated with a small-molecule Rac inhibitor, EHT 1864 (wild-type /EHT). We found that Rac1 is sequentially activated downstream of Rap1 on stimulation via GPVI. In return, Rac1 provides important feedback for both CalDAG-GEFI– and P2Y12-dependent activation of Rap1. When analyzing platelet responses controlled by Rac1, we observed (1) impaired lamellipodia formation, clot retraction, and granule release in both double knock-out and EHT 1864-treated wild-type platelets; and (2) reduced calcium store release in EHT 1864-treated wild-type but not double knock-out platelets. Consistent with the latter finding, we identified 2 pools of Rac1, one activated immediately downstream of GPVI and 1 activated downstream of Rap1. Conclusion—We demonstrate important crosstalk between Rap1 and Rac1 downstream of GPVI. Whereas Rap1 signaling directly controls sustained Rac1 activation, Rac1 affects CalDAG-GEFI– and P2Y12-dependent Rap1 activation via its role in calcium mobilization and granule/ADP release, respectively.


Blood | 2011

Key role of glycoprotein Ib-V-IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow

Judith M. E. M. Cosemans; Saskia E.M. Schols; Lucia Stefanini; Susanne de Witt; Marion A. H. Feijge; Karly Hamulyak; Hans Deckmyn; Wolfgang Bergmeier; Johan W. M. Heemskerk

A microscopic method was developed to study the role of platelets in fibrin formation. Perfusion of adhered platelets with plasma under coagulating conditions at a low shear rate (250(-1)) resulted in the assembly of a star-like fibrin network at the platelet surface. The focal fibrin formation on platelets was preceded by rises in cytosolic Ca(2+), morphologic changes, and phosphatidylserine exposure. Fibrin formation was slightly affected by α(IIb)β(3) blockage, but it was greatly delayed and reduced by the following: inhibition of thrombin or platelet activation; interference in the binding of von Willebrand factor (VWF) to glycoprotein Ib/V/IX (GpIb-V-IX); plasma or blood from patients with type 1 von Willebrand disease; and plasma from mice deficient in VWF or the extracellular domain of GpIbα. In this process, the GpIb-binding A1 domain of VWF was similarly effective as full-length VWF. Prestimulation of platelets enhanced the formation of fibrin, which was abrogated by blockage of phosphatidylserine. Together, these results show that, in the presence of thrombin and low shear flow, VWF-induced activation of GpIb-V-IX triggers platelet procoagulant activity and anchorage of a star-like fibrin network. This process can be relevant in hemostasis and the manifestation of von Willebrand disease.


Blood | 2011

CalDAG-GEFI deficiency protects mice in a novel model of FcγRIIA-mediated thrombosis and thrombocytopenia

Moritz Stolla; Lucia Stefanini; Pierrette Andre; Timothy D. Ouellette; Michael P. Reilly; Steven E. McKenzie; Wolfgang Bergmeier

Platelet activation via Fcγ receptor IIA (FcγRIIA) is a critical event in immune-mediated thrombocytopenia and thrombosis syndromes (ITT). We recently identified signaling by the guanine nucleotide exchange factor CalDAG-GEFI and the adenosine diphosphate receptor P2Y12 as independent pathways leading to Rap1 small GTPase activation and platelet aggregation. Here, we evaluated the contribution of CalDAG-GEFI and P2Y12 signaling to platelet activation in ITT. Mice transgenic for the human FcγRIIA (hFcR) and deficient in CalDAG-GEFI(-/-) (hFcR/CDGI(-/-)) were generated. Compared with controls, aggregation of hFcR/CDGI(-/-) platelets or P2Y12 inhibitor-treated hFcR platelets required more than 5-fold and approximately 2-fold higher concentrations of a FcγRIIA stimulating antibody against CD9, respectively. Aggregation and Rap1 activation were abolished in P2Y12 inhibitor-treated hFcR/CDGI(-/-) platelets. For in vivo studies, a novel model for antibody-induced thrombocytopenia and thrombosis was established. FcγRIIA-dependent platelet thrombosis was induced by infusion of Alexa750-labeled antibodies to glycoprotein IX (CD42a), and pulmonary thrombi were detected by near-infrared imaging technology. Anti-GPIX antibodies dose-dependently caused thrombocytopenia and pulmonary thrombosis in hFcR-transgenic but not wild-type mice. CalDAG-GEFI-deficient but not clopidogrel-treated hFcR-transgenic mice were completely protected from ITT. In summary, we established a novel mouse model for ITT, which was used to identify CalDAG-GEFI as a potential new target in the treatment of ITT.


Platelets | 2010

CalDAG-GEFI and platelet activation

Lucia Stefanini; Wolfgang Bergmeier

Rapid activation of platelets at sites of vascular injury is a critical event in thrombosis and hemostasis. Here, we review recent findings, which (a) identified CalDAG-GEFI (RasGRP2) at the nexus of the rapid Ca2+-dependent platelet activation, (b) demonstrated a complex synergy between signaling provided by CalDAG-GEFI, protein kinase C and the Gi-coupled receptor for ADP, P2Y12, and (c) suggested CalDAG-GEFI as a novel target for anti-platelet therapy.


Current Opinion in Hematology | 2013

Platelet ITAM signaling.

Wolfgang Bergmeier; Lucia Stefanini

Purpose of reviewG protein-coupled receptors (GPCRs) like PAR1/4 and P2Y12 have long been known for their critical role in hemostasis. In contrast, deficiency in the immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors glycoprotein (GP)VI or C-type lectin-like receptor (CLEC)-2 is associated with only a mild bleeding diathesis in humans and mice. This review summarizes recent developments on the physiological importance of platelet ITAM signaling as well as the molecular mechanisms facilitating this signaling pathway. Recent findingsGenetic experiments identified a critical role for platelet CLEC-2 signaling in the formation of lymphatic vessels during development. Similarly, signaling by both GPVI and CLEC-2, but not GPCRs, is required for the maintenance of vascular integrity at sites of inflammation in the adult. The molecular mechanisms underlying ITAM signaling in platelets continue to be refined. SummaryPlatelet ITAM signaling plays a key role for the maintenance of vascular integrity in development and the adult. This novel form of hemostasis differs from hemostasis at sites of vascular injury in that it does not depend on major platelet adhesion receptors or GPCR signaling.

Collaboration


Dive into the Lucia Stefanini's collaboration.

Top Co-Authors

Avatar

Wolfgang Bergmeier

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moritz Stolla

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Raymond Piatt

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David S. Paul

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

R. Claire Roden

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Yacine Boulaftali

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Adam Snider

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Roden

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge