Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Wick is active.

Publication


Featured researches published by Lucia Wick.


The Holocene | 2003

Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey

Lucia Wick; Genry Lemcke; M. Sturm

Annually laminated sediments from Lake Van, spanning about 13000 varve years, were sampled for stable-isotopic, geochemical, pollen and charcoal analyses in order to find evidence of past regional climatic changes and human impact in the semi-arid region of eastern Anatolia, Turkey. The Lateglacial period was cold and dry, with steppe vegetation and saline lake water. During the Younger Dryas the lake level dropped dramatically, and the vegetation tumed to a semi-desert. Geochemical and isotopic records indicate a strong increase in moisture at the onset of the Holocene, and Arteinisia-chenopod steppes were partly replaced by grass steppe and pistachio scrub. A delay of about 3000 years in the expansion of deciduous oak woodlands and high steppe-fire frequencies suggest dry spring and summer weather during the early Holocene. At 8200 yr BP, a shift in the regional climate regime facilitated the transport of more moisture into the interior areas of the Taurus mountains and caused a change in the seasonal distribution of precipitation. The steppe-forests dominated by Quercus advanced and reached their maximum extention at about 6200 yr BP. All the proxy data indicate optimum climatic conditions, low water salinity and high lake level between 6200 and 4000 yr BP. After 4000 yr BP, aridity increased again and the modern climatic situation was established. Human impact in the catchment of Lake Van started at 3800 yr BP and was intensified during the last 600 years.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2000

Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis

Brigitta Ammann; H. J. B. Birks; Stephen J. Brooks; Ulrich Eicher; Ulrich von Grafenstein; Wolfgang Hofmann; Geoffrey Lemdahl; Jakob Schwander; Kazimierz Tobolski; Lucia Wick

To assess the presence or absence of lags in biotic responses to rapid climatic changes, we: (1) assume that the δ18O in biogenically precipitated carbonates record global or hemispheric climatic change at the beginning and at the end of the Younger Dryas without any lag at our two study sites of Gerzensee and Leysin, Switzerland; (2) derive a time scale by correlating the δ18O record from these two sites with the δ18O record of the GRIP ice core; (3) measure δ18O records in ostracods and molluscs to check the record in the bulk samples and to detect possible hydrological changes; (4) analyse at Gerzensee and Leysin as well as at two additional sites (that lack carbonates and hence a δ18O record) pollen, plant macrofossils, chironomids, beetles and other insects, and Cladocera; (5) estimate our sampling resolution using the GRIP time scale for the isotope stratigraphies and the biostratigraphies; and (6) summarise the major patterns of compositional change in the biostratigraphies by principal component analysis or correspondence analysis. We conclude that, at the major climatic shifts at the beginning and end of the Younger Dryas, hardly any biotic lags occur (within the sampling resolution of 8–30 years) and that upland vegetation responded as fast as aquatic invertebrates. We suggest that the minor climatic changes associated with the Gerzensee and Preboreal oscillations were weakly recorded in the biostratigraphies at the lowland site, but were more distinct at higher altitudes. Individualistic responses of plant and animal species to climatic change may reflect processes in individuals (e.g. productivity and phenology), in populations (e.g. population dynamics), in spatial distributions (e.g. migrations), and in ecosystems (e.g. trophic state). We suggest that biotic responses may be telescoped together into relatively short periods (50 to 150 years), perhaps disrupting functional interactions among species and thus destabilising ecosystems.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2000

Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages

André F. Lotter; H. J. B. Birks; Ulrich Eicher; Wolfgang Hofmann; Jakob Schwander; Lucia Wick

Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerod, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerod summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerod–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.


Chemosphere | 2002

Holocene biomass burning and global dynamics of the carbon cycle

Christopher Carcaillet; H Almquist; Hans Asnong; Richard H. W. Bradshaw; J.S. Carrión; Marie-José Gaillard; K Gajewski; Jean Nicolas Haas; Simon Haberle; P Hadorn; Serge D. Muller; Pierre J. H. Richard; I Richoz; Manfred Rösch; M.F. Sánchez Goñi; H. von Stedingk; A C Stevenson; Brigitte Talon; C Tardy; Willy Tinner; E Tryterud; Lucia Wick; Katherine J. Willis

Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated approximately 6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500-3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.


Journal of Paleolimnology | 2003

Holocene vegetation development in the catchment of Sägistalsee ( 1935 m asl), a small lake in the Swiss Alps

Lucia Wick; J.F.N. van Leeuwen; W.O. van der Knaap; André F. Lotter

Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lakes catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.


Global Change Biology | 2015

Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling

Anna-Kari Trondman; Marie-José Gaillard; Florence Mazier; Shinya Sugita; Ralph Fyfe; Anne Birgitte Nielsen; Claire Twiddle; Philip Barratt; H. J. B. Birks; Anne E. Bjune; Leif Björkman; Anna Broström; Chris Caseldine; Rémi David; John Dodson; Walter Dörfler; E. Fischer; B. van Geel; Thomas Giesecke; Tove Hultberg; L. Kalnina; Mihkel Kangur; P. van der Knaap; Tiiu Koff; Petr Kuneš; Per Lagerås; Małgorzata Latałowa; Jutta Lechterbeck; Chantal Leroyer; Michelle Leydet

We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1° × 1° spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2003

Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl)

Oliver Heiri; Lucia Wick; Jacqueline F. N. van Leeuwen; Willem Oscar van der Knaap; André F. Lotter

Early Holocene reforestation by stone pine (Pinus cembra) and tree birch (Betula pubescens) took place ca. 500 years after the end of the Younger Dryas at Hinterburgsee, a small subalpine lake in the northern Swiss Alps. During the next ca. 3000 years the local vegetation consisted of open woodlands with many pioneer dwarf shrubs and herbs. The expansion of silver fir (Abies alba) at ca. 7400 calibrated radiocarbon years before present (cal. BP) and Norway spruce (Picea abies) at ca. 6000 cal. BP in Hinterburgsee’s catchment led to a closing of the local forests with a successive decrease in erosion and a distinct change in Hinterburgsee’s sediment composition. First signs of probably human-induced openings of the catchment forest are apparent at ca. 2500 cal. BP, but it is not until the past ca. 800 years that pollen analysis suggests strong local and regional anthropogenic activity. The strongest and most abrupt changes in the Holocene development of Hinterburgsee’s chironomid fauna took place at ca. 11 500 cal. BP and at ca. 10 000 cal. BP, when parts of the alpine taxa that were dominant during the Younger Dryas disappeared from the lake. The first change is most likely related to the increasing temperatures after the end of the Younger Dryas, the second possibly to decreasing lake depth and increasing summer insolation in the early Holocene that may have led to warmer bottom water temperatures in the lake. No clear relationship between the changes in catchment vegetation and the development of the chironomid fauna was found. Possibly the increase in sediment organic matter associated with the denser catchment forests was responsible for a succession in the chironomid stratigraphy between 7000 and 4500 cal. BP. However, due to the high sedimentation rates in Hinterburgsee this trend could also be a consequence of, or be promoted by, the sediment infilling of the lake basin. This conjecture is supported by the increasing importance of Tanytarsus lugens-type, a chironomid taxon dominant in the extant chironomid assemblages of shallow mountain lakes in Switzerland. The only shift in the chironomid fauna that clearly parallels a change in catchment vegetation is found during the past ca. 800 years. We discuss possible reasons for the comparatively weak influence of catchment vegetation on the chironomid fauna of Hinterburgsee and the implications of our results for multi-proxy studies on past climate involving both palaeobotanical and chironomid-based reconstructions. = 2002 Elsevier Science B.V. All rights reserved.


Ecological Modelling | 2002

Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeological record

Franziska Keller; Heike Lischke; Thomas Mathis; Adrian Möhl; Lucia Wick; Brigitta Ammann; Felix Kienast

In order to find out which factors influenced the forest dynamics in northern Italy during the Holocene, a palaeoecological approach involving pollen analysis was combined with ecosystem modelling. The dynamic and distribution based forest model DisCForm was run with different input scenarios for climate, species immigration, fire, and human impact and the similarity of the simulations with the original pollen record was assessed. From the comparisons of the model output and the pollen core, it appears that immigration was most important in the first part of the Holocene, and that fire and human activity had a major influence in the second half. Species not well represented in the simulation outputs are species with a higher abundance in the past than today (Corylus), with their habitat in riparian forests (Alnus) or with a strong response to human impact (Castanea).


Vegetation History and Archaeobotany | 2000

Influence of human impact and bedrock differences on the vegetational history of the Insubrian Southern Alps

Erika Gobet; Willy Tinner; Priska Hubschmid; I. Jansen; Michael Wehrli; Brigitta Ammann; Lucia Wick

Vegetation history for the study region is reconstructed on the basis of pollen, charcoal and AMS14C investigations of lake sediments from Lago del Segrino (calcareous bedrock) and Lago di Muzzano (siliceous bedrock). Late-glacial forests were characterised byBetula andPinus sylvestris. At the beginning of the Holocene they were replaced by temperate continental forest and shrub communities. A special type of temperate lowland forest, withAbies alba as the most important tree, was present in the period 8300 to 4500 B.P. Subsequently,Fagus, Quercus andAlnus glutinosa were the main forest components andA. alba ceased to be of importance.Castanea sativa andJuglans regia were probably introduced after forest clearance by fire during the first century A.D. On soils derived from siliceous bedrock,C. sativa was already dominant at ca. A.D. 200 (A.D. dates are in calendar years). In limestone areas, however,C. sativa failed to achieve a dominant role. After the introduction ofC. sativa, the main trees were initially oak (Quercus spp.) and later the walnut (Juglans regia). Ostrya carpinifolia became the dominant tree around Lago del Segrino only in the last 100–200 years though it had spread into the area at ca. 5000 cal. B.C. This recent expansion ofOstrya is confirmed at other sites and appears to be controlled by human disturbances involving especially clearance. It is argued that these forests should not be regarded as climax communities. It is suggested that under undisturbed succession they would develop into mixed deciduous forests consisting ofFraxinus excelsior, Tilia, Ulmus, Quercus andAcer.


Environmental Archaeology | 2013

Methods for the examination of cattle, sheep and goat dung in prehistoric wetland settlements with examples of the sites Alleshausen-Täschenwiesen and Alleshausen-Grundwiesen (around cal 2900 BC) at Lake Federsee, south-west Germany

Marlu Kühn; Ursula Maier; Christoph Herbig; Kristin Ismail-Meyer; Matthieu Le Bailly; Lucia Wick

Abstract There has been evidence of dung in lakeside and moorland settlements since the beginning of wetland archaeology in the 19th century. While evidence has been found for the easily discernible faecal pellets of sheep and goats, recognition of cattle dung has proven to be considerably more difficult. In this study, we give an overview of evidence for dung remains in prehistoric wetland settlements in Germany, Switzerland and eastern France. Various methods for the analysis of uncharred dung remains are reviewed – analyses of plant macro- and microremains, micromorphology and palaeoparasitology – and are applied to two late Neolithic sites in Germany, Alleshausen-Täschenwiesen and Alleshausen-Grundwiesen. It will be shown that at Alleshausen-Täschenwiesen small ruminants were penned during the whole winter and fed on leaf hay unlike Alleshausen-Grundwiesen, where cattle browsed/grazed in the open during the day and were herded into the settlement during the night – both in summer and in winter.

Collaboration


Dive into the Lucia Wick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Pini

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge