Lucian Albulescu
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucian Albulescu.
Expert Review of Molecular Diagnostics | 2011
Radu Albulescu; Monica Neagu; Lucian Albulescu; Cristiana Tanase
Digestive cancers (e.g., gastric, colorectal, pancreatic or hepatocarcinoma) are among the most frequently reported cancers in the world, and are characterized by invasivity, metastatic potential and poor outcomes. This group includes some of the most critical cancers (among them, are those ranked second to forth in cancer-related mortality) and, despite all sustained efforts, they maintain a profile of low survival rates and lack successful therapies. Discovery of biomarkers that improve disease characterization may make optimized or personalized therapy possible. Novel biomarkers are expected to provide, hopefully, less-invasive or noninvasive diagnostic tools that make possible earlier detection of disease. Also, they may provide a more reliable selection instrument in the drug discovery process. miRNAs, short noncoding RNAs, have emerged in the last few years as significant regulators of cellular activities, controlling protein expression at the post-transcriptional level, with a significant implication in pathology in general and, of most relevance, in cancers. Deregulation of miRNA expression levels and some genetic alterations were demonstrated in various cancers, including digestive cancers. Investigations in tissue samples have provided a considerable amount of knowledge, identifying altered expressions of miRNAs associated with tumorigenesis and tumor progression. Overexpression of some tumor-inducing or tumor-promoting miRNAs was demonstrated, as well as the downregulation of tumor-suppressor miRNAs. Both individual miRNAs, as well as sets of multiple miRNAs, were set up as candidate biomarkers for diagnostics or monitoring, offering relevant insights into tumorigenic mechanisms. Circulating miRNAs were demonstrated as valuable instruments in tumor diagnosis and the prognosis of digestive cancers (affecting the esophagus, stomach, intestine, colorectum, liver and pancreas), and are being investigated thoroughly in order to generate and validate less-invasive diagnostic tools with enhanced sensitivity.
PLOS Pathogens | 2015
Cristina M. Dorobantu; Lucian Albulescu; Christian Harak; Qian Feng; Mirjam van Kampen; Jeroen R.P.M. Strating; Alexander E. Gorbalenya; Volker Lohmann; Hilde M. van der Schaar; Frank J. M. van Kuppeveld
Cardioviruses, including encephalomyocarditis virus (EMCV) and the human Saffold virus, are small non-enveloped viruses belonging to the Picornaviridae, a large family of positive-sense RNA [(+)RNA] viruses. All (+)RNA viruses remodel intracellular membranes into unique structures for viral genome replication. Accumulating evidence suggests that picornaviruses from different genera use different strategies to generate viral replication organelles (ROs). For instance, enteroviruses (e.g. poliovirus, coxsackievirus, rhinovirus) rely on the Golgi-localized phosphatidylinositol 4-kinase III beta (PI4KB), while cardioviruses replicate independently of the kinase. By which mechanisms cardioviruses develop their ROs is currently unknown. Here we show that cardioviruses manipulate another PI4K, namely the ER-localized phosphatidylinositol 4-kinase III alpha (PI4KA), to generate PI4P-enriched ROs. By siRNA-mediated knockdown and pharmacological inhibition, we demonstrate that PI4KA is an essential host factor for EMCV genome replication. We reveal that the EMCV nonstructural protein 3A interacts with and is responsible for PI4KA recruitment to viral ROs. The ensuing phosphatidylinositol 4-phosphate (PI4P) proved important for the recruitment of oxysterol-binding protein (OSBP), which delivers cholesterol to EMCV ROs in a PI4P-dependent manner. PI4P lipids and cholesterol are shown to be required for the global organization of the ROs and for viral genome replication. Consistently, inhibition of OSBP expression or function efficiently blocked EMCV RNA replication. In conclusion, we describe for the first time a cellular pathway involved in the biogenesis of cardiovirus ROs. Remarkably, the same pathway was reported to promote formation of the replication sites of hepatitis C virus, a member of the Flaviviridae family, but not other picornaviruses or flaviviruses. Thus, our results highlight the convergent recruitment by distantly related (+)RNA viruses of a host lipid-modifying pathway underlying formation of viral replication sites.
Antiviral Research | 2015
Lucian Albulescu; Jeroen R.P.M. Strating; Hendrik Jan Thibaut; Lonneke van der Linden; Matthew D. Shair; Johan Neyts; Frank J. M. van Kuppeveld
Enteroviruses, e.g., polio-, coxsackie- and rhinoviruses, constitute a large genus within the Picornaviridae family of positive-strand RNA viruses and include many important pathogens linked to a variety of acute and chronic diseases. Despite their huge medical and economic impact, no approved antiviral therapy is yet available. Recently, the oxysterol-binding protein (OSBP) was implicated as a host factor for enterovirus replication. Here, we investigated the antiviral activity of the natural compound OSW-1, a ligand of OSBP that is under investigation as an anti-cancer drug. OSW-1 potently inhibited the replication of all enteroviruses tested, with IC50 values in the low nanomolar range, acted at the genome replication stage and was effective in all tested cell types of three different species. Importantly, OSBP overexpression rescued viral replication, demonstrating that the antiviral effect of OSW-1 is due to targeting OSBP. Together, we here report the anti-enterovirus activity of the natural anti-cancer compound OSW-1.
Biomarkers in Medicine | 2008
Cristiana Pistol-Tanase; Elena Raducan; Simona Dima; Lucian Albulescu; Ionita Alina; Poroschianu Marius; Linda Maria Cruceru; Eleonora Codorean; Teodora Monica Neagu; Irinel Popescu
UNLABELLED Angiogenic markers such as VEGF/basic FGF (bFGF) can enlarge the diagnostic biomarkers panel for pancreatic cancer. MATERIALS & METHODS Serum samples from 32 stage I-IV pancreatic cancer patients and 20 controls were analyzed for soluble VEGF/bFGF by ELISA and xMAP array. RESULTS VEGF/bFGF serum levels were significantly increased in patients compared with controls (p < 0.0001). We report a correlation with tumor diameter (p < 0.01/p < 0.05), stage (p < 0.001), Ki67LI (p < 0.005/p < 0.05) and carbohydrate 19-9 antigen (p < 0.005/p < 0.001). VEGF/bFGF levels analyzed by xMAP array were comparable with the pattern (patient/control) outline obtained by ELISA tests. We obtained a good correlation between these two soluble angiogenic markers (p < 0.001). CONCLUSION Data obtained for angiogenic markers qualifies them as important candidates in the pancreatic cancer biomarker panel.
Proteome Science | 2014
Ionela Daniela Popescu; Elena Codrici; Lucian Albulescu; Simona Mihai; Ana-Maria Enciu; Radu Albulescu; Cristiana Tanase
BackgroundThe rapid progress of proteomics over the past years has allowed the discovery of a large number of potential biomarker candidates to improve early tumor diagnosis and therapeutic response, thus being further integrated into clinical environment. High grade gliomas represent one of the most aggressive and treatment-resistant types of human brain cancer, with approximately 9-12 months median survival rate for patients with grade IV glioma (glioblastoma). Using state-of-the-art proteomics technologies, we have investigated the proteome profile for glioblastoma patients in order to identify a novel protein biomarker panel that could discriminate glioblastoma patients from controls and increase diagnostic accuracy.ResultsIn this study, SELDI-ToF MS technology was used to screen potential protein patterns in glioblastoma patients serum; furthermore, LC-MS/MS technology was applied to identify the candidate biomarkers peaks. Through these proteomic approaches, three proteins S100A8, S100A9 and CXCL4 were selected as putative biomarkers and confirmed by ELISA. Next step was to validate the above mentioned molecules as biomarkers through identification of protein expression by Western blot in tumoral versus peritumoral tissue.ConclusionsProteomic technologies have been used to investigate the protein profile of glioblastoma patients and established several potential diagnostic biomarkers. While it is unlikely for a single biomarker to be highly effective for glioblastoma diagnostic, our data proposed an alternative and efficient approach by using a novel combination of multiple biomarkers.
Trends in Microbiology | 2016
Hilde M. van der Schaar; Cristina M. Dorobantu; Lucian Albulescu; Jeroen R.P.M. Strating; Frank J. M. van Kuppeveld
All viruses that carry a positive-sense RNA genome (+RNA), such as picornaviruses, hepatitis C virus, dengue virus, and SARS- and MERS-coronavirus, confiscate intracellular membranes of the host cell to generate new compartments (i.e., replication organelles) for amplification of their genome. Replication organelles (ROs) are membranous structures that not only harbor viral proteins but also contain a specific array of hijacked host factors that create a unique lipid microenvironment optimal for genome replication. While some lipids may be locally synthesized de novo, other lipids are shuttled towards ROs. In picornavirus-infected cells, lipids are exchanged at membrane contact sites between ROs and other organelles. In this paper, we review recent advances in our understanding of how picornaviruses exploit host membrane contact site machinery to generate ROs, a mechanism that is used by some other +RNA viruses as well.
Cellular Microbiology | 2015
Lucian Albulescu; Richard Wubbolts; Frank J. M. van Kuppeveld; Jeroen R.P.M. Strating
Picornaviruses are a family of positive‐strand RNA viruses that includes important human and animal pathogens. Upon infection, picornaviruses induce an extensive remodelling of host cell membranes into replication organelles (ROs), which is critical for replication. Membrane lipids and lipid remodelling processes are at the base of RO formation, yet their involvement remains largely obscure. Recently, phosphatidylinositol‐4‐phosphate was the first lipid discovered to be important for the replication of a number of picornaviruses. Here, we investigate the role of the lipid cholesterol in picornavirus replication. We show that two picornaviruses from distinct genera that rely on different host factors for replication, namely the enterovirus coxsackievirus B3 (CVB3) and the cardiovirus encephalomyocarditis virus (EMCV), both recruited cholesterol to their ROs. Although CVB3 and EMCV both required cholesterol for efficient genome replication, the viruses appeared to rely on different cellular cholesterol pools. Treatments that altered the distribution of endosomal cholesterol inhibited replication of both CVB3 and EMCV, showing the importance of endosomal cholesterol shuttling for the replication of these viruses. Summarizing, we here demonstrate the importance of cholesterol homeostasis for efficient replication of CVB3 and EMCV.
mSphere | 2016
Cristina M. Dorobantu; Lucian Albulescu; Heyrhyoung Lyoo; Mirjam van Kampen; Raffaele De Francesco; Volker Lohmann; Christian Harak; Hilde M. van der Schaar; Jeroen R.P.M. Strating; Alexander E. Gorbalenya; Frank J. M. van Kuppeveld
Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous “replication organelles” (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses. ABSTRACT Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate “replication organelles” (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous “replication organelles” (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses.
Antiviral Research | 2017
Lucian Albulescu; Joëlle Bigay; Bishyajit Kumar Biswas; Marion Weber-Boyvat; Cristina M. Dorobantu; Leen Delang; Hilde M. van der Schaar; Young-Sik Jung; Johan Neyts; Vesa M. Olkkonen; Frank J. M. van Kuppeveld; Jeroen R.P.M. Strating
ABSTRACT The genus Enterovirus (e.g. poliovirus, coxsackievirus, rhinovirus) of the Picornaviridae family of positive‐strand RNA viruses includes many important pathogens linked to a range of acute and chronic diseases for which no approved antiviral therapy is available. Targeting a step in the life cycle that is highly conserved provides an attractive strategy for developing broad‐range inhibitors of enterovirus infection. A step that is currently explored as a target for the development of antivirals is the formation of replication organelles, which support replication of the viral genome. To build replication organelles, enteroviruses rewire cellular machinery and hijack lipid homeostasis pathways. For example, enteroviruses exploit the PI4KIII&bgr;‐PI4P‐OSBP pathway to direct cholesterol to replication organelles. Here, we uncover that TTP‐8307, a known enterovirus replication inhibitor, acts through the PI4KIII&bgr;‐PI4P‐OSBP pathway by directly inhibiting OSBP activity. However, despite a shared mechanism of TTP‐8307 with established OSBP inhibitors (itraconazole and OSW‐1), we identify a number of notable differences between these compounds. The antiviral activity of TTP‐8307 extends to other viruses that require OSBP, namely the picornavirus encephalomyocarditis virus and the flavivirus hepatitis C virus. HIGHLIGHTSTTP‐8307 inhibits enterovirus replication.Mutations in viral protein 3A that provide resistance to PI4KIII&bgr; and OSBP inhibitors also provide resistance to TTP‐8307.TTP‐8307 does not inhibit PI4KIII&bgr; activity.TTP‐8307 inhibits OSBP‐mediated lipid shuttling.OSBP inhibitors TTP‐8307, OSW‐1 and itraconazole have different mechanisms of inhibition.
Radiology Research and Practice | 2013
Monica Neagu; Carolina Constantin; Diana Martin; Lucian Albulescu; Nicusor I. Iacob; Daniel Ighigeanu
A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70), IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.