Luciana A. Fátima
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luciana A. Fátima.
Theriogenology | 2013
Nathia Nathaly Rigoglio; Luciana A. Fátima; Jaqueline Y. Hanassaka; Gizélia L. Pinto; Alex Sander D. Machado; L. U. Gimenes; P. S. Baruselli; Francisco Palma Rennó; Carlos Eduardo Bezerra de Moura; Il-Sei Watanabe; Paula de Carvalho Papa
Exogenous eCG for stimulation of a single dominant follicle or for superovulation are common strategies to improve reproductive efficiency by increasing pregnancy rates and embryo production, respectively. Morphofunctional changes in the CL of eCG-treated cattle include increases in CL volume and plasma progesterone concentrations. Therefore, we tested the hypothesis that eCG alters the content of luteal cells and mitochondria related to hormone production. Twelve crossbred beef cows were synchronized and then allocated into three groups (four cows per group) and received no further treatment (control) or were given eCG either before or after follicular deviation (superovulation and stimulation of the dominant follicle, respectively). Six days after ovulation, cows were slaughtered and CL collected for morphohistologic and ultrastructural analysis. Mitochondrial volume per CL was highest in superovulated followed by stimulated and then control cows (18,500 ± 2630, 12,300 ± 2640, and 7670 ± 3400 μm(3); P < 0.001), and the density of spherical mitochondria and the total number of large luteal cells were increased (P < 0.05) in stimulated cows compared with the other two groups (110.32 ± 14.22, 72.26 ± 8.77, and 70.46 ± 9.58 mitochondria per μm(3) and 678 ± 147, 245 ± 199, and 346 ± 38 × 10(6) cells, respectively. However, the largest diameters of the large luteal cells were increased in superovulated and control cows versus stimulated ones (32.32 ± 0.06, 31.59 ± 0.81, and 29.44 ± 0.77 μm; P < 0.0001). In contrast, the total number of small luteal cells was increased in superovulated cows (1456 ± 268, 492 ± 181, and 822 ± 461 × 10(6), P < 0.05). In conclusion, there were indications of cellular changes related to increased hormonal production (stimulatory treatment) and increased CL volume (superovulatory treatment).
Reproduction, Fertility and Development | 2013
Luciana A. Fátima; P. S. Baruselli; L. U. Gimenes; M. Binelli; Francisco Palma Rennó; Bruce D. Murphy; Paula de Carvalho Papa
Equine chorionic gonadotrophin (eCG) has been widely used in superovulation and artificial insemination programmes and usually promotes an increase in corpus luteum (CL) volume and stimulates progesterone production. Therefore, to identify eCG-regulated genes in the bovine CL, the transcriptome was evaluated by microarray analysis and the expression of selected genes was validated by qPCR and western blot. Eighteen Nelore crossbred cows were divided into control (n=5), stimulated (n=6) and superovulated groups (n=7). Ovulation was synchronised using a progesterone device-based protocol. Stimulated animals received 400 IU of eCG at device removal and superovulated animals received 2000 IU of eCG 4 days prior. Corpora lutea were collected 7 days after gonadotrophin-releasing hormone administration. Overall, 242 transcripts were upregulated and 111 transcripts were downregulated in stimulated cows (P ≤ 0.05) and 111 were upregulated and 113 downregulated in superovulated cows compared to the control animals (1.5-fold, P ≤ 0.05). Among the differentially expressed genes, many were involved in lipid biosynthesis and progesterone production, such as PPARG, STAR, prolactin receptors and follistatin. In conclusion, eCG modulates gene expression differently depending on the treatment, i.e. stimulatory or superovulatory. Our data contribute to the understanding of the pathways involved in increased progesterone levels observed after eCG treatment.
Domestic Animal Endocrinology | 2013
Luciana A. Fátima; M.C. Evangelista; R.S. Silva; A.P.M. Cardoso; P. S. Baruselli; Paula de Carvalho Papa
Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins.
Reproduction | 2013
Paula de Carvalho Papa; Liza Margareth Medeiros de Carvalho Sousa; Renata dos Santos Silva; Luciana A. Fátima; Vanessa U. Fonseca; Vanessa Coutinho do Amaral; Bernd Hoffmann; Ana Bárbara Alves-Wagner; Ubiratan Fabres Machado; Mariusz P. Kowalewski
The canine corpus luteum (CL) functions as a source of progesterone (P4) and 17β-oestradiol (E2); however, the transport of energy substrates to maintain its high hormonal output has not yet been characterised. This study involved the localisation and temporal distribution of the facilitative glucose transporter 1 and the quantification of the corresponding protein (GLUT1) and gene (SLC2A1) expression. Some GLUT1/SLC2A1 regulatory proteins, such as hypoxia-inducible factor 1α (HIF1A) and fibroblast growth factor 2 (FGF2); mRNAs, such as HIF1A, FGF2 and vascular endothelial growth factor A (VEGFA); and VEGFA receptors 1 and 2 (FLT1 and KDR) were also analysed from days 10 to 70 after ovulation. Additionally, plasma P4 and E2 levels were assessed via chemiluminescence. Moreover, the canine KDR sequence has been cloned, thereby enabling subsequent semi-quantitative PCR analysis. Our results demonstrate time-dependent variations in the expression profile of SLC2A1 during dioestrus, which were accompanied by highly correlated changes (0.84<r<0.98; P<0.03) in the gene expression of HIF1A, VEGF and FLT1 as well as in P4 plasma concentrations. FGF2 mRNA correlated with E2 plasma concentrations (r=0.61; P=0.01). Our data reveal that the glucose transporter is regulated throughout the CL lifespan and suggest that CL depends on the sensing of hypoxia and the status of luteal vascularisation. Moreover, time-dependent expression of GLUT1/SLC2A1 may lie underneath increased metabolic and energetic requirements for sustaining P4 production.
Autonomic Neuroscience: Basic and Clinical | 2015
Ana Bárbara Alves-Wagner; Rosana Cristina Tieko Mori; Robinson Sabino-Silva; Luciana A. Fátima; Adilson S. Alves; Luiz R.G. Britto; Beatriz D'Agord Schaan; Ubiratan Fabres Machado
OBJECTIVE Unequivocal modulation of glycemic homeostasis by chronic beta-adrenergic blockade in diabetes has never been demonstrated. This study investigates the participation of beta-adrenergic system in glycemic control and muscle glucose transporter GLUT4 expression in insulin-treated diabetic rats. METHODS Insulin-treated diabetic Wistar (W) or spontaneously hypertensive rats (SHR) were additionally treated with propranolol, and glycemic homeostasis and expression of some target mRNAs and proteins in soleus and extensor digitorum longus (EDL) muscles were analyzed. RESULTS Insulin improved glycemic control in both strains. Importantly, in W, propranolol promoted a further improvement in glycemic control, which was accompanied by decreased PKA and Tnf expression, and increased Slc2a4 and GLUT4 in EDL. Those effects were not observed in diabetic-SHR. DISCUSSION Propranolol-induced decrease in beta-adrenergic activity in skeletal muscles of insulin-treated diabetic Wistar rats increases GLUT4 expression in EDL, improving glycemic control. These outcomes represent a positive effect of nonselective beta-blockade, which might be extended to autonomic neuropathy.
Journal of Molecular Endocrinology | 2017
Raquel Saldanha Campello; Luciana A. Fátima; João Nilton Barreto-Andrade; Thaís F.G. Lucas; Rosana Cristina Tieko Mori; Catarina S. Porto; Ubiratan Fabres Machado
Impaired insulin-stimulated glucose uptake involves reduced expression of the GLUT4 (solute carrier family 2 facilitated glucose transporter member 4, SLC2A4 gene). 17β-estradiol (E2) modulates SLC2A4/GLUT4 expression, but the involved mechanisms are unclear. Although E2 exerts biological effects by binding to estrogen receptors 1/2 (ESR1/2), which are nuclear transcriptional factors; extranuclear effects have also been proposed. We hypothesize that E2 regulates GLUT4 through an extranuclear ESR1 mechanism. Thus, we investigated the effects of E2 upon (1) subcellular distribution of ESRs and the proto-oncogene tyrosine-protein kinases (SRC) involvement; (2) serine/threonine-protein kinase (AKT) activation; (3) Slc2a4/GLUT4 expression and (4) GLUT4 subcellular distribution and glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were cultivated or not with E2 for 24 h, and additionally treated or not with ESR1-selective agonist (PPT), ESR1-selective antagonist (MPP) or selective SRC inhibitor (PP2). Subcellular distribution of ESR1, ESR2 and GLUT4 was analyzed by immunocytochemistry; Slc2a4 mRNA and GLUT4 were quantified by qPCR and Western blotting, respectively; plasma membrane GLUT4 translocation and glucose uptake were analyzed under insulin stimulus for 20 min or not. E2 induced (1) translocation of ESR1, but not of ESR2, from nucleus to plasma membrane and AKT phosphorylation, effects mimicked by PPT and blocked by MPP and PP2; (2) increased Slc2a4/GLUT4 expression and (3) increased insulin-stimulated GLUT4 translocation and glucose uptake. In conclusion, E2 treatment promoted a SRC-mediated nucleus-plasma membrane shuttle of ESR1, and increased AKT phosphorylation, Slc2a4/GLUT4 expression and plasma membrane GLUT4 translocation; consequently, improving insulin-stimulated glucose uptake. These results unravel mechanisms through which estrogen improves insulin sensitivity.
Cell Metabolism | 2016
Eugenia Morselli; Aaron P. Frank; Roberta S. Santos; Luciana A. Fátima; Biff F. Palmer; Deborah J. Clegg
(Cell Metabolism 24, 203–209; August 9, 2016) As a result of an author oversight in the originally published version of this article, there were mathematical errors in the estimated number of persons in which gender identity does not match biological sex at birth. The original article stated that the number of estimated individuals for whom this applies was approximately 8 million people in the United States; this should have been stated as 800,000 people in the United States, or about 0.2%–0.3% of the population. The original article also stated that the prevalence could actually exceed 0.5% of the population, or 16 million people; the latter number should have been 1.6 million. Finally, the original article originally stated that, within the Veterans Health Administration, the incidence of transgender-related diagnoses increased by 76% from 2009 to 2013; this should have more accurately said that the incidence increased from 936 diagnoses in 2009 to 2,567 diagnoses in 2013. These errors have now been corrected in the article online. The authors apologize for these errors and any inconvenience this may have caused.
International Journal of Medical Sciences | 2018
João Nilton Barreto-Andrade; Luciana A. Fátima; Raquel Saldanha Campello; José Augusto Cipriano Guedes; Helayne Soares de Freitas; Maristela Mou Fabres Machado
Background: Estrogens are involved in glycemic regulation, playing an important role in the development and/or progression of insulin resistance. For that, estrogens regulate the expression of the glucose transporter protein GLUT4 (codified by the solute carrier family 2 member 4 gene, Slc2a4), thus modulating adipose and muscle glucose disposal. This regulation is a balance between ESR1-mediated enhancer effect and ESR2-mediated repressor effect on Slc2a4 gene. However, molecular mechanisms involved in these effects are poorly understood. Since the specificity protein 1 (SP1) participates in several ESR-mediated genomic regulations, the aim of the present study is to investigate the participation of SP1 in the ESR1/2-mediated regulation of Slc2a4 gene. Methods: Differentiated 3T3-L1 adipocytes were 24-hour challenged with 10 nM estradiol (E2) and 10 nM ESR1 agonist (PPT) or 100 nM ESR2 agonist (DPN), added or not with E2. Slc2a4 and Sp1 mRNAs (RT-qPCR), total GLUT4 and nuclear ESR1, ESR2 and SP1 proteins (Western blotting), SP1 binding activity into Slc2a4 promoter (EMSA), and nuclear complexation of SP1/ESR1 (immunoprecipitation) were analyzed. Results: E2 and PPT increased (25-50%) whereas DPN reduced (20-45%) Slc2a4 and GLUT4 expression. Nuclear content of ESR1 and ESR2 remained unchanged. Nuclear content of SP1 increased (50 to 90%) by PPT and DPN added or not with E2; the highest effect observed with PPT alone. PPT also increased the nuclear content of SP1/ESR1 complex and the SP1 binding into the Slc2a4 promoter. Conclusions: ESR1 activation in adipocytes increased the nuclear content of SP1 protein, the SP1/ESR1 interaction and SP1 binding into the Slc2a4 gene promoter, culminating with increased Slc2a4/GLUT4 expression. No involvement of SP1 seems to occur in ESR2-mediated repressor effect on Slc2a4. We expect that this ESR1/SP1 cooperative effect can contribute to the development of new approaches for prevention or treatment of insulin resistance and diabetes mellitus.
Domestic Animal Endocrinology | 2007
Paula de Carvalho Papa; C.E.B. Moura; L.P. Artoni; Luciana A. Fátima; D.B. Campos; J.E.B. Marques; P. S. Baruselli; M. Binelli; C. Pfarrer; R. Leiser
Cell Metabolism | 2016
Eugenia Morselli; Aaron P. Frank; Roberta S. Santos; Luciana A. Fátima; Biff F. Palmer; Deborah J. Clegg