Luciana Benevides
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luciana Benevides.
Inflammation Research | 2011
Reginaldo Bruno Gonçalves; R. D. Coletta; Karina Gonzales Silvério; Luciana Benevides; Márcio Zaffalon Casati; J. S. da Silva; Francisco Humberto Nociti
BackgroundInflammation is a critical component of normal tissue repair, as well as being fundamental to the body’s defense against infection. Environmental factors, such as smoking, have been reported to modify the host response and hence modify inflammation progression, severity and outcome. Therefore, a comprehensive understanding of the molecular mechanisms by which smoking affects inflammation is vital for preventive and therapeutic strategies on a clinical level.AimThe purpose of the present article is to review the potential biological mechanisms by which smoking affects inflammation, emphasizing recent developments.ResultsSmoking is reported to effect a number of biological mediators of inflammation through its effect on immune-inflammatory cells, leading to an immunosuppressant state. Recent evidence strongly suggests that the molecular mechanisms behind the modulation of inflammation by smoking mainly involve the nuclear factor-kappa B (NF-kB) family, through the activation of both an inhibitor of IkB kinase (IKK)-dependent and -independent pathway. In addition to NF-kB activation, a number of transcriptional factors including GATA, PAX5 and Smad 3/4, have also been implicated.ConclusionMultiple mechanisms may be responsible for the association of smoking and inflammation, and the identification of potential therapeutic targets should guide future research.
Journal of Periodontology | 2010
Karina Gonzales Silvério; Thaisângela L. Rodrigues; Ricardo Dela Coletta; Luciana Benevides; João Santana da Silva; Márcio Zaffalon Casati; Enilson Antonio Sallum; Francisco Humberto Nociti
BACKGROUND Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. METHODS PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. RESULTS Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. CONCLUSION These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications.
Cancer Immunology, Immunotherapy | 2010
Thaís Helena Gasparoto; Tatiana Salles de Souza Malaspina; Luciana Benevides; Edgard Jose Franco de Melo; Maria Renata Sales Nogueira Costa; José Humberto Damante; Maura Rosane Valério Ikoma; Gustavo Pompermaier Garlet; Karen A. Cavassani; João Santana da Silva; Ana Paula Campanelli
Oral squamous cell carcinoma (OSCC) is a cancerous lesion with high incidence worldwide. The immunoregulatory events leading to OSCC persistence remain to be elucidated. Our hypothesis is that regulatory T cells (Tregs) are important to obstruct antitumor immune responses in patients with OSCC. In the present study, we investigated the frequency, phenotype, and activity of Tregs from blood and lesions of patients with OSCC. Our data showed that >80% of CD4+CD25+ T cells isolated from PBMC and tumor sites express FoxP3. Also, these cells express surface Treg markers, such as GITR, CD45RO, CD69, LAP, CTLA-4, CCR4, and IL-10. Purified CD4+CD25+ T cells exhibited stronger suppressive activity inhibiting allogeneic T-cell proliferation and IFN-γ production when compared with CD4+CD25+ T cells isolated from healthy individuals. Interestingly, approximately 25% of CD4+CD25− T cells of PBMC from patients also expressed FoxP3 and, although these cells weakly suppress allogeneic T cells proliferative response, they inhibited IFN-γ and induced IL-10 and TGF-β secretion in these co-cultures. Thus, our data show that Treg cells are present in OSCC lesions and PBMC, and these cells appear to suppress immune responses both systemically and in the tumor microenvironment.
European Journal of Immunology | 2013
Luciana Benevides; Cristina R. Cardoso; Daniel Guimarães Tiezzi; Heitor Ricardo Cosiski Marana; Jurandyr Moreira de Andrade; João S. Silva
Breast cancer is a leading cause of neoplasia‐associated death in women worldwide. Regulatory T (Treg) and Th17 cells are enriched within some tumors, but the role these cells play in invasive ductal carcinoma (IDC) of the breast is unknown. We show that CD25+CD4+ T cells from PBMCs and tumor express high levels of Foxp3, GITR, CTLA‐4, and CD103, indicating that tumor‐infiltrating Treg cells are functional and possibly recruited by CCL22. Additionally, we observed upregulation of Th17‐related molecules (IL‐17A, RORC, and CCR6) and IL‐17A produced by tumor‐infiltrating CD4+ and CD8+ T lymphocytes. The angiogenic factors CXCL8, MMP‐2, MMP‐9, and vascular endothelial growth factor detected within the tumor are possibly induced by IL‐17 and indicative of poor disease prognosis. Treg and Th17 cells were synchronically increased in IDC patients, with positive correlation between Foxp3, IL‐17A, and RORC expression, and associated with tumor aggressiveness. Therefore, Treg and Th17 cells can affect disease progression by Treg‐cell‐mediated suppression of the effector T‐cell response, as indicated by a decrease in the proliferation of T cells isolated from PBMCs of IDC patients and induction of angiogenic factors by IL‐17‐producing Th17. The understanding of regulation of the Treg/Th17 axis may result in novel perspectives for the control of invasive tumors.
Cancer Research | 2015
Luciana Benevides; Denise Morais da Fonseca; Paula B. Donate; Daniel Guimarães Tiezzi; Daniel De Carvalho; Jurandyr Moreira de Andrade; Gislaine Martins; João S. Silva
The aggressiveness of invasive ductal carcinoma (IDC) of the breast is associated with increased IL17 levels. Studying the role of IL17 in invasive breast tumor pathogenesis, we found that metastatic primary tumor-infiltrating T lymphocytes produced elevated levels of IL17, whereas IL17 neutralization inhibited tumor growth and prevented the migration of neutrophils and tumor cells to secondary disease sites. Tumorigenic neutrophils promote disease progression, producing CXCL1, MMP9, VEGF, and TNFα, and their depletion suppressed tumor growth. IL17A also induced IL6 and CCL20 production in metastatic tumor cells, favoring the recruitment and differentiation of Th17. In addition, IL17A changed the gene-expression profile and the behavior of nonmetastatic tumor cells, causing tumor growth in vivo, confirming the protumor role of IL17. Furthermore, high IL17 expression was associated with lower disease-free survival and worse prognosis in IDC patients. Thus, IL17 blockade represents an attractive approach for the control of invasive breast tumors.
American Journal of Pathology | 2008
Luciana Benevides; Cristiane Maria Milanezi; Lucy Megumi Yamauchi; Claudia F. Benjamim; João Santana da Silva; Neide M. Silva
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T. gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T. gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2(-/-) mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T. gondii replication in the central nervous system.
European Journal of Immunology | 2011
Braulia Costa Caetano; Amlan Biswas; Djalma S. Lima-Junior; Luciana Benevides; Tiago W. P. Mineo; Catarina V. Horta; Kyoung-Hee Lee; João S. Silva; Ricardo T. Gazzinelli; Dario S. Zamboni; Koichi S. Kobayashi
Nod2 belongs to the nucleotide‐binding domain leucine‐rich repeat family of proteins and senses bacterial cell wall components to initiate innate immune responses against various pathogens. Recently, it has been reported that T‐cell‐intrinsic expression of Nod2 promotes host defense against Toxoplasma gondii infection by inducing type 1 immunity. Here, we present results that demonstrate that Nod2 does not play a role in the defense against T. gondii infection. Nod2‐deficient mice were fully capable of inducing Th1 immune responses and did not show enhanced susceptibility to infection. Upon TCR stimulation in vitro, Nod2‐deficient CD4+ T cells showed normal activation, IL‐2 production, proliferation, and Th1/2 differentiation. Nod2 mRNA and protein were expressed in CD4+ T and CD8+ T cells at substantial levels. Therefore, Nod2, although expressed in CD4+ T cells, does not have an intrinsic function in T‐cell activation and differentiation.
Veterinary Research | 2009
Tiago W. P. Mineo; Luciana Benevides; Neide M. Silva; João S. Silva
Neospora caninum is an intracellular parasite that causes major economic impact on cattle raising farms, and infects a wide range of warm-blooded hosts worldwide. Innate immune mechanisms that lead to protection against this parasite are still unknown. In order to investigate whether myeloid differentiation factor 88 (MyD88) is required for resistance against N. caninum, genetically deficient mice (MyD88−/−) and wild type littermates were infected with live tachyzoites and the resistance to infection was evaluated. We found that sub-lethal tachyzoite doses induced acute mortality of MyD88−/− mice, which succumbed to infection due to uncontrolled parasite replication. Higher parasitism in MyD88−/− mice was associated with the lack of IL-12 production by dendritic cells, delayed IFN-γ responses by NKT, CD4+ and CD8+ T lymphocytes, and production of high levels of IL-10. MyD88−/− mice replenished with IL-12 and IFN-γ abolished susceptibility as the animals survived throughout the experimental period. We conclude that protective IFN-γ-mediated immunity to N. caninum is dependent on initial MyD88 signaling, in a mechanism triggered by production of IL-12 by dendritic cells. Further knowledge on Toll-like receptor recognition of N. caninum antigens is encouraged, since it could generate new prophylactic and therapeutic tools to control parasite burden.
PLOS ONE | 2014
Giuliano Bonfá; Luciana Benevides; Maria do Carmo Souza; Denise Morais da Fonseca; Tiago W. P. Mineo; Marcos A. Rossi; Neide M. Silva; João Santana da Silva; Cristina R. Cardoso
CCR5, an important receptor related to cell recruitment and inflammation, is expressed during experimental Toxoplasma gondii infection. However, its role in the immunopathology of toxoplasmosis is not clearly defined yet. Thus, we inoculated WT and CCR5-/- mice with a sub lethal dose of the parasite by oral route. CCR5-/- mice were extremely susceptible to infection, presenting higher parasite load and lower tissue expression of IL-12p40, IFN-γ, TNF, IL-6, iNOS, Foxp3, T-bet, GATA-3 and PPARα. Although both groups presented inflammation in the liver with prominent neutrophil infiltration, CCR5-/- mice had extensive tissue damage with hepatocyte vacuolization, steatosis, elevated serum triglycerides and transaminases. PPARα agonist Gemfibrozil improved the vacuolization but did not rescue CCR5-/- infected mice from high serum triglycerides levels and enhanced mortality. We also found intense inflammation in the ileum of CCR5-/- infected mice, with epithelial ulceration, augmented CD4 and decreased frequency of NK cells in the gut lamina propria. Most interestingly, these findings were accompanied by an outstanding accumulation of neutrophils in the ileum, which seemed to be involved in the gut immunopathology, once the depletion of these cells was accompanied by reduced local damage. Altogether, these data demonstrated that CCR5 is essential to the control of T. gondii infection and to maintain the metabolic, hepatic and intestinal integrity. These findings add novel information on the disease pathogenesis and may be relevant for directing future approaches to the treatment of multi-deregulated diseases.
PLOS ONE | 2013
Luciana Benevides; Cristina R. Cardoso; Cristiane Maria Milanezi; Letícia S. Castro-Filice; Paulo Victor Czarnewski Barenco; Romulo Sousa; Rosangela M. Rodrigues; José Roberto Mineo; João S. Silva; Neide M. Silva
Toxoplasma gondii induces a potent IL-12 response early in infection that results in IFN-γ-dependent control of parasite growth. It was previously shown that T. gondii soluble tachyzoite antigen (STAg) injected 48 hr before intraperitoneal infection reduces lipoxin A4 and 5-lipoxygenase (5-LO)-dependent systemic IL-12 and IFN-γ production as well as hepatic immunopathology. This study investigated the ability of STAg-pretreatment to control the fatal intestinal pathology that develops in C57BL/6 mice orally infected with 100 T. gondii cysts. STAg-pretreatment prolonged the animals’ survival by decreasing tissue parasitism and pathology, mainly in the ilea. Protection was associated with decreases in the systemic IFN-γ levels and IFN-γ and TNF message levels in the ilea and with increased TGF-β production in this tissue, but protection was independent of 5-LO and IL-4. STAg-pretreatment decreased CD4+ T cell, NK cell, CD11b+ monocyte and CD11b+CD11c+ dendritic cell numbers in the lamina propria and increased CD8+ T cells in the intestinal epithelial compartment. In parallel, decreases were observed in iNOS and IL-17 expression in this organ. These results demonstrate that pretreatment with STAg can induce the recruitment of protective CD8+ T cells to the intraepithelial compartment and decrease proinflammatory immune mechanisms that promote intestinal pathology in T. gondii infection.