Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luciana Bianchi is active.

Publication


Featured researches published by Luciana Bianchi.


The Astrophysical Journal | 2005

The Galaxy Evolution Explorer: A Space ultraviolet survey mission

D. Christopher Martin; James L. Fanson; David Schiminovich; Patrick Morrissey; Peter G. Friedman; Tom A. Barlow; Tim Conrow; Robert Grange; Patrick Jelinsky; Bruno Milliard; Oswald H. W. Siegmund; Luciana Bianchi; Yong Ik Byun; Jose Donas; Karl Forster; Timothy M. Heckman; Young-Wook Lee; Barry F. Madore; Roger F. Malina; Susan G. Neff; R. Michael Rich; Todd Small; Frank Surber; Alexander S. Szalay; Barry Y. Welsh; Ted K. Wyder

We give an overview of the Galaxy Evolution Explorer (GALEX), a NASA Explorer Mission launched on 2003 April 28. GALEX is performing the first space UV sky survey, including imaging and grism surveys in two bands (1350-1750 and 1750-2750 ?). The surveys include an all-sky imaging survey (mAB 20.5), a medium imaging survey of 1000 deg2 (mAB 23), a deep imaging survey of 100 deg2 (mAB 25), and a nearby galaxy survey. Spectroscopic (slitless) grism surveys (R = 100-200) are underway with various depths and sky coverage. Many targets overlap existing or planned surveys in other bands. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the relationship of the UV and global star formation rate in local galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the redshift range 0 < z < 2 and probe the physical drivers of star formation in galaxies. The GALEX mission includes a guest investigator program, supporting the wide variety of programs made possible by the first UV sky survey.


Astrophysical Journal Supplement Series | 2007

UV STAR FORMATION RATES IN THE LOCAL UNIVERSE

Samir Salim; R. Michael Rich; S. Charlot; Jarle Brinchmann; Benjamin D. Johnson; David Schiminovich; Mark Seibert; Ryan P. Mallery; Timothy M. Heckman; Karl Forster; Peter G. Friedman; D. Christopher Martin; Patrick Morrissey; Susan G. Neff; Todd Small; Ted K. Wyder; Luciana Bianchi; Jose Donas; Young-Wook Lee; Barry F. Madore; Bruno Milliard; Alexander S. Szalay; Barry Y. Welsh; Sukyoung K. Yi

We measure star formation rates (SFRs) of ≈50,000 optically selected galaxies in the local universe (z ≈ 0.1)—from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dust-attenuated population synthesis models. For star-forming galaxies, our UV-based SFRs compare remarkably well with those from SDSS-measured emission lines (Hα). Deviations from perfect agreement are shown to be due to differences in the dust attenuation estimates. In contrast to Hα measurements, UV provides reliable SFRs for galaxies with weak Hα, and where Hα is contaminated with AGN emission (1/2 of the sample). Using full-SED SFRs, we calibrate a simple prescription that uses GALEX far- and near-UV magnitudes to produce dust-corrected SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGNs, (2) those hosting an AGN, and (3) galaxies without Hα emission. We find that the three have distinct star formation histories, with AGNs lying intermediate between the star-forming and the quiescent galaxies. Star-forming galaxies without an AGN lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. On the other hand, weak AGNs, while also massive, have lower SFRs, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent galaxies via strong and weak AGNs. We confirm that some galaxies with no Hα show signs of star formation in the UV. We derive a cosmic star formation density at z = 0.1 with significantly smaller total error than previous measurements.


The Astrophysical Journal | 2000

Overview of the Far Ultraviolet Spectroscopic Explorer Mission

H. W. Moos; Webster Cash; L. L. Cowie; Arthur F. Davidsen; Andrea K. Dupree; Paul D. Feldman; Scott D. Friedman; James C. Green; R. F. Green; C. Gry; J. B. Hutchings; Edward B. Jenkins; J. L. Linsky; Roger F. Malina; Andrew G. Michalitsianos; Blair D. Savage; J. M. Shull; O. H. W. Siegmund; Theodore P. Snow; George Sonneborn; A. Vidal-Madjar; Allan J. Willis; Bruce E. Woodgate; D. G. York; Thomas B. Ake; B-G Andersson; John Paul Andrews; Robert H. Barkhouser; Luciana Bianchi; William P. Blair

The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution. The instrument consists of four co-aligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al :LiF coatings for optimum reflectivity between approximately 1000 and 1187 Angstrom, and the other two channels use SiC coatings for optimized throughput between 905 and 1105 Angstrom. The gratings are holographically ruled to correct largely for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way and also sufficient to use as active galactic nuclei and QSOs for absorption-line studies of both Milky Way and extragalactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I, and the strong electronic transitions of H-2 and HD.


Astronomy and Astrophysics | 2016

Gaia Data Release 1 - Astrometry: one billion positions, two million proper motions and parallaxes

Lennart Lindegren; Uwe Lammers; U. Bastian; Jonay I. González Hernández; Sergei A. Klioner; David Hobbs; A. Bombrun; Daniel Michalik; M. Ramos-Lerate; A. G. Butkevich; G. Comoretto; E. Joliet; B. Holl; A. Hutton; P. Parsons; H. Steidelmüller; U. Abbas; M. Altmann; A. H. Andrei; S. Anton; N. Bach; C. Barache; Ugo Becciani; Jerome Berthier; Luciana Bianchi; M. Biermann; S. Bouquillon; G. Bourda; T. Brüsemeister; Beatrice Bucciarelli

Gaia Data Release 1 (Gaia DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. We give a brief overview of the astrometric content of the data release and of the model assumptions, data processing, and validation of the results. For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data. Results. For about two million of the brighter stars (down to magnitude ~11.5) we obtain positions, parallaxes, and proper motions to Hipparcos-type precision or better. For these stars, systematic errors depending e.g. on position and colour are at a level of 0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to ~10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1 mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03 mas/yr. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24 mas/yr. Based on less than a quarter of the nominal mission length and on very provisional and incomplete calibrations, the quality and completeness of the astrometric data in Gaia DR1 are far from what is expected for the final mission products. The results nevertheless represent a huge improvement in the available fundamental stellar data and practical definition of the optical reference frame.


The Astrophysical Journal | 2005

Star Formation in NGC 5194 (M51a): The Panchromatic View from GALEX to Spitzer*

Daniela Calzetti; Robert C. Kennicutt; Luciana Bianchi; David Allan Thilker; Daniel A. Dale; C. W. Engelbracht; Claus Leitherer; Martin Meyer; Megan L. Sosey; Maximilian J. Mutchler; Michael W. Regan; Michele D. Thornley; Lee Armus; G. J. Bendo; S. Boissier; A. Boselli; B. T. Draine; Karl D. Gordon; G. Helou; David J. Hollenbach; Lisa J. Kewley; Barry F. Madore; D. C. Martin; E. J. Murphy; G. H. Rieke; Marcia J. Rieke; H. Roussel; Kartik Sheth; J. D. Smith; Frederick M. Walter

(Abridged) Far ultraviolet to far infrared images of the nearby galaxy NGC5194, from Spitzer, GALEX, Hubble Space Telescope and ground--based data, are used to investigate local and global star formation, and the impact of dust extinction in HII-emitting knots. In the IR/UV-UV color plane, the NGC5194 HII knots show the same trend observed for normal star-forming galaxies, having a much larger dispersion than starburst galaxies. We identify the dispersion as due to the UV emission predominantly tracing the evolved, non-ionizing stellar population, up to ages 50-100 Myr. While in starbursts the UV light traces the current SFR, in NGC5194 it traces a combination of current and recent-past SFR. Unlike the UV emission, the monochromatic 24 micron luminosity is an accurate local SFR tracer for the HII knots in NGC5194; this suggests that the 24 micron emission carriers are mainly heated by the young, ionizing stars. However, preliminary results show that the ratio of the 24 micron emission to the SFR varies by a factor of a few from galaxy to galaxy. While also correlated with star formation, the 8 micron emission is not directly proportional to the number of ionizing photons. This confirms earlier suggestions that the carriers of the 8 micron emission are heated by more than one mechanism.


The Astrophysical Journal | 2007

An Ultraviolet-to-Radio Broadband Spectral Atlas of Nearby Galaxies

Daniel A. Dale; A. Gil de Paz; Karl D. Gordon; H. M. Hanson; Lee Armus; G. J. Bendo; Luciana Bianchi; Miwa Block; S. Boissier; A. Boselli; Brent Alan Buckalew; V. Buat; D. Burgarella; Daniela Calzetti; John M. Cannon; C. W. Engelbracht; G. Helou; David J. Hollenbach; T. H. Jarrett; Robert C. Kennicutt; Claus Leitherer; Aigen Li; Barry F. Madore; D. C. Martin; Martin Meyer; E. J. Murphy; Michael W. Regan; Helene Roussel; J. D. Smith; Megan L. Sosey

The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). A principal component analysis of the sample shows that most of the samples spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-to-ultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e.g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope, and star formation history). Consistent with our understanding of normal star-forming galaxies, the SINGS sample of galaxies in comparison to more actively star-forming galaxies exhibits a larger dispersion in the infrared-to-ultraviolet versus ultraviolet spectral slope correlation. Early-type galaxies, exhibiting low star formation rates and high optical surface brightnesses, have the most discrepant infrared-to-ultraviolet correlation. These results suggest that the star formation history may be the dominant regulator of the broadband spectral variations between galaxies. Finally, a new discovery shows that the 24 μm morphology can be a useful tool for parameterizing the global dust temperature and ultraviolet extinction in nearby galaxies. The dust emission in dwarf/irregular galaxies is clumpy and warm accompanied by low ultraviolet extinction, while in spiral galaxies there is typically a much larger diffuse component of cooler dust and average ultraviolet extinction. For galaxies with nuclear 24 μm emission, the dust temperature and ultraviolet extinction are relatively high compared to disk galaxies.


Astrophysical Journal Supplement Series | 2007

The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties

Ted K. Wyder; D. Christopher Martin; David Schiminovich; Mark Seibert; Tamas Budavari; Marie Treyer; Tom A. Barlow; Karl Forster; Peter G. Friedman; Patrick Morrissey; Susan G. Neff; Todd Small; Luciana Bianchi; Jose Donas; Timothy M. Heckman; Young-Wook Lee; Barry F. Madore; Bruno Milliard; R. Michael Rich; Alexander S. Szalay; Barry Y. Welsh; Sukyoung K. Yi

We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV − r)_(0.1) versus M_(r,0.1) galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV − r)_(0.1) color distribution at each M_(r,0.1) is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to M_(r,0.1) ~ − 23. The r_(0.1)-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~10^(10.5) M_☉, galaxies with low ratios of current to past averaged star formation rate begin to dominate.


The Astrophysical Journal | 2005

Galaxy evolution explorer ultraviolet color-magnitude relations and evidence of recent star formation in early-type galaxies

Sukyoung K. Yi; Suk-Jin Yoon; Sugata Kaviraj; J.-M. Deharveng; Robert Michael Rich; Samir Salim; A. Boselli; Young-Wook Lee; Chang Hee Ree; Young-Jong Sohn; Soo-Chang Rey; Jake Lee; Jaehyon Rhee; Luciana Bianchi; Yong-Ik Byun; Jose Donas; Peter G. Friedman; Timothy M. Heckman; Patrick Jelinsky; Barry F. Madore; Roger F. Malina; D. C. Martin; Bruno Milliard; Patrick Morrissey; Susan G. Neff; David Schiminovich; O. H. W. Siegmund; Todd Small; Alexander S. Szalay; M. J. Jee

We have used the Galaxy Evolution Explorer UV photometric data to construct a first near-UV (NUV) color-magnitude relation (CMR) for the galaxies preclassified as early-type by Sloan Digital Sky Survey studies. The NUV CMR is a powerful tool for tracking the recent star formation history in early-type galaxies, owing to its high sensitivity to the presence of young stellar populations. Our NUV CMR for UV-weak galaxies shows a well-defined slope and thus will be useful for interpreting the rest-frame NUV data of distant galaxies and studying their star formation history. Compared to optical CMRs, the NUV CMR shows a substantially larger scatter, which we interpret as evidence of recent star formation activities. Roughly 15% of the recent epoch (z < 0.13) bright [M(r) < -22] early-type galaxies show a sign of recent (1 Gyr) star formation at the 1%-2% level (lower limit) in mass compared to the total stellar mass. This implies that low-level residual star formation was common during the last few billion years even in bright early-type galaxies.


The Astrophysical Journal | 2005

The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate

David Schiminovich; O. Ilbert; S. Arnouts; B. Milliard; L. Tresse; O. Le Fèvre; Marie Treyer; Ted K. Wyder; Tamas Budavari; E. Zucca; G. Zamorani; D. C. Martin; C. Adami; M. Arnaboldi; S. Bardelli; Tom A. Barlow; Luciana Bianchi; M. Bolzonella; D. Bottini; Yong-Ik Byun; A. Cappi; T. Contini; S. Charlot; J. Donas; Karl Forster; S. Foucaud; P. Franzetti; Peter G. Friedman; B. Garilli; I. Gavignaud

In a companion paper (Arnouts et al. 2004) we presented new measurements of the galaxy luminosity function at 1500 Angstroms out to z~1 using GALEX-VVDS observations (1039 galaxies with NUV 0.2) and at higher z using existing data sets. In this paper we use the same sample to study evolution of the FUV luminosity density. We detect evolution consistent with a (1+z)^{2.5+/-0.7} rise to z~1 and (1+z)^{0.5+/-0.4} for z>1. The luminosity density from the most UV-luminous galaxies (UVLG) is undergoing dramatic evolution (x30) between 025%) of the total FUV luminosity density at z<1. We measure dust attenuation and star formation rates of our sample galaxies and determine the star formation rate density as a function of redshift, both uncorrected and corrected for dust. We find good agreement with other measures of the SFR density in the rest ultraviolet and Halpha given the still significant uncertainties in the attenuation correction.


The Astrophysical Journal | 2005

Dust attenuation in the nearby universe: a comparison between galaxies selected in the ultraviolet and in the far-infrared

V. Buat; J. Iglesias-Páramo; Mark Seibert; D. Burgarella; S. Charlot; D. C. Martin; C. K. Xu; Timothy M. Heckman; S. Boissier; A. Boselli; Tom A. Barlow; Luciana Bianchi; Yong-Ik Byun; Jose Donas; Karl Forster; Peter G. Friedman; P. N. Jelinski; Young-Wook Lee; Barry F. Madore; Roger F. Malina; Bruno Milliard; P. Morissey; Susan G. Neff; Michael R. Rich; D. Schiminovitch; O. H. W. Siegmund; Todd Small; Alexander S. Szalay; Barry Y. Welsh; Ted K. Wyder

We compare the dust attenuation properties of two samples of galaxies purely selected in the Galaxy Evolution Explorer (GALEX) near-ultraviolet band (NUV; 1750-2750 A, λmean = 2310 A) and in the far-infrared (FIR) at 60 μm. These samples are built using the GALEX and IRAS sky surveys over ~600 deg2. The NUV-selected sample contains 95 galaxies detected down to NUV = 16 mag (AB system). Eighty-three galaxies in this sample are spiral or irregular, and only two of them are not detected at 60 μm. The FIR-selected sample is built from the IRAS PSCz survey, which is complete down to 0.6 Jy. Among the 163 sources, we select 118 star-forming galaxies that are well measured by IRAS; all but one are detected in NUV, and 14 galaxies are not detected in the far-ultraviolet band (FUV; 1350-1750 A, λmean = 1530 A). The dust-to-ultraviolet (NUV and FUV) flux ratio is calibrated to estimate the dust attenuation at both wavelengths. The median value of the attenuation in NUV is found to be ~1 mag for the NUV-selected sample, versus ~2 mag for the FIR-selected one. Within both samples, the dust attenuation is found to correlate with the luminosity of the galaxies. Almost all the NUV-selected galaxies and two-thirds of the FIR-selected sample exhibit a lower dust attenuation than expected from the tight relation found previously for starburst galaxies between dust attenuation and the slope of the ultraviolet continuum. The situation is reversed for the remaining third of the FIR-selected galaxies: their extinction is higher than that deduced from their FUV - NUV color and the relation for starbursts.

Collaboration


Dive into the Luciana Bianchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter G. Friedman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Susan G. Neff

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Barry F. Madore

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Karl Forster

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bruno Milliard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose Donas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ted K. Wyder

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tom A. Barlow

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge