Luciana C. Veiras
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luciana C. Veiras.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008
Analia Lorena Tomat; Felipe Inserra; Luciana C. Veiras; Maria Constanza Vallone; Ana M. Balaszczuk; María A. Costa; Cristina Arranz
Intrauterine and postnatal zinc restriction may result in an adverse environment for the development of cardiovascular and renal systems. This study evaluated the effects of moderate zinc deficiency during fetal life, lactation, and/or postweaning growth on systolic blood pressure, renal function, and morphology in adult life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy up to weaning. After weaning, male offspring of each group of mothers were fed low or control zinc diet. Systolic blood pressure, creatinine clearance, proteinuria, renal morphology, renal apoptosis. and renal oxidative stress state were evaluated after 60 days. Zinc deficiency during pre- and postweaning growth induced an increase in systolic blood pressure and a decrease in the glomerular filtration rate associated with a reduction in the number and size of nephrons. Activation of renal apoptosis, reduction in catalase activity, glutathione peroxidase activity, and glutathione levels and increase in lipid peroxidation end products could explain these morphometric changes. Zinc deficiency through pre- and postweaning growth induced more pronounced renal alteration than postweaning zinc deficiency. These animals showed signs of renal fibrosis, proteinuria, increased renal apoptosis, and higher lipid peroxidation end products. A control diet during postweaning growth did not totally overcome renal oxidative stress damage, apoptosis, and fibrosis induced by zinc deficiency before weaning. In conclusion, zinc deficiency during a critical period of renal development and maturation could induce functional and morphological alterations that result in elevated blood pressure and renal dysfunction in adult life.
American Journal of Physiology-renal Physiology | 2012
Jorge F. Giani; Valeria Burghi; Luciana C. Veiras; Analia Lorena Tomat; Marina C. Muñoz; Gabriel Cao; Daniel Turyn; Jorge E. Toblli; Fernando P. Dominici
Angiotensin (ANG)-(1-7) is known to attenuate diabetic nephropathy; however, its role in the modulation of renal inflammation and oxidative stress in type 2 diabetes is poorly understood. Thus in the present study we evaluated the renal effects of a chronic ANG-(1-7) treatment in Zucker diabetic fatty rats (ZDF), an animal model of type 2 diabetes and nephropathy. Sixteen-week-old male ZDF and their respective controls [lean Zucker rats (LZR)] were used for this study. The protocol involved three groups: 1) LZR + saline, 2) ZDF + saline, and 3) ZDF + ANG-(1-7). For 2 wk, animals were implanted with subcutaneous osmotic pumps that delivered either saline or ANG-(1-7) (100 ng·kg(-1)·min(-1)) (n = 4). Renal fibrosis and tissue parameters of oxidative stress were determined. Also, renal levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ED-1, hypoxia-inducible factor-1α (HIF-1α), and neutrophil gelatinase-associated lipocalin (NGAL) were determined by immunohistochemistry and immunoblotting. ANG-(1-7) induced a reduction in triglyceridemia, proteinuria, and systolic blood pressure (SBP) together with a restoration of creatinine clearance in ZDF. Additionally, ANG-(1-7) reduced renal fibrosis, decreased thiobarbituric acid-reactive substances, and restored the activity of both renal superoxide dismutase and catalase in ZDF. This attenuation of renal oxidative stress proceeded with decreased renal immunostaining of IL-6, TNF-α, ED-1, HIF-1α, and NGAL to values similar to those displayed by LZR. Angiotensin-converting enzyme type 2 (ACE2) and ANG II levels remained unchanged after treatment with ANG-(1-7). Chronic ANG-(1-7) treatment exerts a renoprotective effect in ZDF associated with a reduction of SBP, oxidative stress, and inflammatory markers. Thus ANG-(1-7) emerges as a novel target for treatment of diabetic nephropathy.
American Journal of Physiology-cell Physiology | 2015
Alicia A. McDonough; Luciana C. Veiras; Jacqueline Minas; Donna L. Ralph
The development of the immunoblot to detect and characterize a protein with an antisera, even in a crude mixture, was a breakthrough with wide-ranging and unpredictable applications across physiology and medicine. Initially, this technique was viewed as a tool for qualitative, not quantitative, analyses of proteins because of the high number of variables between sample preparation and detection with antibodies. Nonetheless, as the immunoblot method was streamlined and improved, investigators pushed it to quantitate protein abundance in unpurified samples as a function of treatment, genotype, or pathology. This short review, geared at investigators, reviewers, and critical readers, presents a set of issues that are of critical importance for quantitative analysis of protein abundance: 1) Consider whether tissue samples are of equivalent integrity and assess how handling between collection and assay influences the apparent relative abundance. 2) Establish the specificity of the antiserum for the protein of interest by providing clear images, molecular weight markers, positive and negative controls, and vendor details. 3) Provide convincing evidence for linearity of the detection system by assessing signal density as a function of sample loaded. 4) Recognize that loading control proteins are rarely in the same linear range of detection as the protein of interest; consider protein staining of the gel or blot. In summary, with careful attention to sample integrity, antibody specificity, linearity of the detection system, and acceptable loading controls, investigators can implement quantitative immunoblots to convincingly assess protein abundance in their samples.
Journal of The American Society of Nephrology | 2017
Luciana C. Veiras; Adriana Castello Costa Girardi; Joshua Curry; Lei Pei; Donna L. Ralph; An Tran; Regiane C. Castelo-Branco; Núria M. Pastor-Soler; Cristina Arranz; Alan S. L. Yu; Alicia A. McDonough
Compared with males, females have lower BP before age 60, blunted hypertensive response to angiotensin II, and a leftward shift in pressure natriuresis. This study tested the concept that this female advantage associates with a distinct sexual dimorphic pattern of transporters along the nephron. We applied quantitative immunoblotting to generate profiles of transporters, channels, claudins, and selected regulators in both sexes and assessed the physiologic consequences of the differences. In rats, females excreted a saline load more rapidly than males did. Compared with the proximal tubule of males, the proximal tubule of females had greater phosphorylation of Na+/H+ exchanger isoform 3 (NHE3), distribution of NHE3 at the base of the microvilli, and less abundant expression of Na+/Pi cotransporter 2, claudin-2, and aquaporin 1. These changes associated with less bicarbonate reabsorption and higher lithium clearance in females. The distal nephrons of females had a higher abundance of total and phosphorylated Na+/Cl- cotransporter (NCC), claudin-7, and cleaved forms of epithelial Na+ channel (ENaC) α and γ subunits, which associated with a lower baseline plasma K+ concentration. A K+-rich meal increased the urinary K+ concentration and decreased the level of renal phosphorylated NCC in females. Notably, we observed similar abundance profiles in female versus male C57BL/6 mice. These results define sexual dimorphic phenotypes along the nephron and suggest that lower proximal reabsorption in female rats expedites excretion of a saline load and enhances NCC and ENaC abundance and activation, which may facilitate K+ secretion and set plasma K+ at a lower level.
Hypertension | 2016
Luciana C. Veiras; Jiyang Han; Donna L. Ralph; Alicia A. McDonough
Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na+ channel abundance and activating cleavage. Acutely raising plasma [K+] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K+] with a single 3-hour 2% potassium meal would lower NCCp in Sprague–Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K+ excretion. AngII-infused rats exhibited lower plasma [K+] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na+ channel activation provokes K+ depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K+ depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K+] and 2-fold higher K+ excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na+ channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K+ channel abundance) abundance was unaffected by AngII or dietary K+. In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na+ channel stimulation.
Physiological Reports | 2015
Mien T. X. Nguyen; Jiyang Han; Donna L. Ralph; Luciana C. Veiras; Alicia A. McDonough
In Sprague Dawley rats, 2‐week angiotensin II (AngII) infusion increases Na+ transporter abundance and activation from cortical thick ascending loop of Henle (TALH) to medullary collecting duct (CD) and raises blood pressure associated with a pressure natriuresis, accompanied by depressed Na+ transporter abundance and activation from proximal tubule (PT) through medullary TALH. This study tests the hypothesis that early during AngII infusion, before blood pressure raises, Na+ transporters’ abundance and activation increase all along the nephron. Male Sprague Dawley rats were infused via osmotic minipumps with a subpressor dose of AngII (200 ng/kg/min) or vehicle for 3 days. Overnight urine was collected in metabolic cages and sodium transporters’ abundance and phosphorylation were determined by immunoblotting homogenates of renal cortex and medulla. There were no significant differences in body weight gain, overnight urine volume, urinary Na+ and K+ excretion, or rate of excretion of a saline challenge between AngII and vehicle infused rats. The 3‐day nonpressor AngII infusion significantly increased the abundance of PT Na+/H+ exchanger 3 (NHE3), cortical TALH Na‐K‐2Cl cotransporter 2 (NKCC2), distal convoluted tubule (DCT) Na‐Cl cotransporter (NCC), and cortical CD ENaC subunits. Additionally, phosphorylation of cortical NKCC2, NCC, and STE20/SPS1‐related proline–alanine‐rich kinase (SPAK) were increased; medullary NKCC2 and SPAK were not altered. In conclusion, 3‐day AngII infusion provokes PT NHE3 accumulation as well as NKCC2, NCC, and SPAK accumulation and activation in a prehypertensive phase before evidence for intrarenal angiotensinogen accumulation.
American Journal of Physiology-renal Physiology | 2017
Minolfa C. Prieto; Virginia Reverte; Mykola Mamenko; Marta Kuczeriszka; Luciana C. Veiras; Carla B. Rosales; Matthew McLellan; Oliver Gentile; V. Behrana Jensen; Atsuhiro Ichihara; Alicia A. McDonough; Oleh Pochynyuk; Alexis A. Gonzalez
Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na+ reabsorption via activation of epithelial Na+ channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na+ handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD (CDPRR-KO). At basal conditions, CDPRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na+ excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg-1·min-1), the increases in systolic BP and diastolic BP were mitigated in CDPRR-KO mice. CDPRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CDPRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments.
Journal of The American Society of Nephrology | 2018
Masahiro Eriguchi; Ellen A. Bernstein; Luciana C. Veiras; Zakir Khan; Duo Yao Cao; Sebastien Fuchs; Alicia A. McDonough; Jorge E. Toblli; Romer A. Gonzalez-Villalobos; Kenneth E. Bernstein; Jorge F. Giani
BACKGROUND Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACEs two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1β, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.
American Journal of Physiology-endocrinology and Metabolism | 2017
Alicia A. McDonough; Luciana C. Veiras; Claire A. Guevara; Donna L. Ralph
Hypertension | 2015
Luciana C. Veiras; Jiyang Han; Donna L. Ralph; Alicia A. McDonough