Luciana M. Rangel
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luciana M. Rangel.
Harmful Algae | 2016
Michele Astrid Burford; John Beardall; Anusuya Willis; Philip T. Orr; Valéria F. Magalhães; Luciana M. Rangel; Sandra M.F.O.e. Azevedo; Brett A. Neilan
The cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. It is of particular concern because strains in some geographic areas are capable of producing toxins with implications for human and animal health. Studies of this species have increased rapidly in the last two decades, especially in the southern hemisphere where toxic strains are prevalent. A clearer picture is emerging of the strategies adopted by this species to bloom and out-compete other species. This species has a high level of flexibility with respect to light and nutrients, with higher temperatures and carbon dioxide also promoting growth. There are two types of toxins produced by C. raciborskii: cylindrospermopsins (CYNs) and saxitoxins (STXs). The toxins CYNs are constitutively produced irrespective of environmental conditions and the ecological or physiological role is unclear, while STXs appear to serve as protection against high salinity and/or water hardness. It is also apparent that strains of this species can vary substantially in their physiological responses to environmental conditions, including CYNs production, and this may explain discrepancies in findings from studies in different geographical areas. The combination of a flexible strategy with respect to environmental conditions, and variability in strain response makes it a challenging species to manage. Our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology of this species.
Brazilian Journal of Biology | 2009
Luciana M. Rangel; Lúcia H. S. Silva; Marlene Sofia Arcifa; A. Perticarrari
Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo) were investigated in two climatological periods: July 2001 (cool-dry season) and March 2002 (warm-rainy season). Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (L(m), Y, W(1) and W(2)) and functional groups typical of shallow eutrophic environments (J, X(1) and S(n)) were important throughout the study period. The lakes thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.
Hydrobiologia | 2016
Gian Salazar Torres; Lúcia H. S. Silva; Luciana M. Rangel; José Luiz Attayde; Vera L. M. Huszar
Omnivorous filter-feeding fish are common in tropical lakes and reservoirs, and can potentially reduce phytoplankton biomass in eutrophic systems. The goal of this study was to evaluate direct grazing or indirect increase in phytoplankton biomass through the trophic cascade and fish-mediated nutrient recycling produced by Nile tilapia. Natural phytoplankton assemblages were incubated in permeable chambers placed inside mesocosms with and without fish. Outside these chambers (mesocosms), phytoplankton was exposed to effects from nutrient recycling by zooplankton and fish, and to grazing by these consumers. Inside the permeable chambers, phytoplankton was exposed only to nutrient recycling by zooplankton and fish. Our results showed that in mesocosms, cyanobacteria biomass was significantly reduced by fish; water transparency and ammonium concentrations also increased, but did not affect soluble reactive phosphorus concentrations or zooplankton biomass. Fish-mediated nutrient recycling did not enhance phytoplankton growth inside permeable chambers, because phytoplankton growth was limited in this study by phosphorus availability. The estimated grazing rates showed that tilapia were able to reduce approximately 60% of phytoplankton biomass (mostly cyanobacteria). Our data indicated that fish grazing was the mechanism controlling cyanobacteria biomass. This study provides evidence that Oreochromis niloticus has the potential to reduce cyanobacteria community in eutrophic reservoirs.
Microbial Ecology | 2017
Carolina D. Domingues; Lúcia H. S. Silva; Luciana M. Rangel; Leonardo de Magalhães; Adriana de Melo Rocha; Lúcia M. Lobão; Rafael Paiva; Fábio Roland; Hugo Sarmento
Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.
Frontiers in Microbiology | 2018
Iamê Alves Guedes; Caio T. C. C. Rachid; Luciana M. Rangel; Lúcia H. S. Silva; Paulo Mascarello Bisch; Sandra M.F.O. Azevedo; Ana Beatriz Furlanetto Pacheco
Cyanobacteria tend to become the dominant phytoplankton component in eutrophic freshwater environments during warmer seasons. However, general observations of cyanobacterial adaptive advantages in these circumstances are insufficient to explain the prevalence of one species over another in a bloom period, which may be related to particular strategies and interactions with other components of the plankton community. In this study, we present an integrative view of a mixed cyanobacterial bloom occurring during a warm, rainy period in a tropical hydropower reservoir. We used high-throughput sequencing to follow temporal shifts in the dominance of cyanobacterial genera and shifts in the associated heterotrophic bacteria community. The bloom occurred during late spring-summer and included two distinct periods. The first period corresponded to Microcystis aeruginosa complex (MAC) dominance with a contribution from Dolichospermum circinale; this pattern coincided with high water retention time and low transparency. The second period corresponded to Cylindrospermopsis raciborskii and Synechococcus spp. dominance, and the reservoir presented lower water retention time and higher water transparency. The major bacterial phyla were primarily Cyanobacteria and Proteobacteria, followed by Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Temporal shifts in the dominance of cyanobacterial genera were not only associated with physical features of the water but also with shifts in the associated heterotrophic bacteria. The MAC bloom was associated with a high abundance of Bacteroidetes, particularly Cytophagales. In the second bloom period, Planctomycetes increased in relative abundance, five Planctomycetes OTUs were positively correlated with Synechococcus or C. raciborskii OTUs. Our results suggest specific interactions of the main cyanobacterial genera with certain groups of the heterotrophic bacterial community. Thus, considering biotic interactions may lead to a better understanding of the shifts in cyanobacterial dominance.
Hydrobiologia | 2012
Luciana M. Rangel; Lúcia H. S. Silva; Priscila Rosa; Fábio Roland; Vera L. M. Huszar
Ecological Indicators | 2016
Luciana M. Rangel; Maria Carolina S. Soares; Rafael Paiva; Lúcia H. S. Silva
Limnologica | 2014
Lúcia H. S. Silva; Vera L. M. Huszar; Marcelo Manzi Marinho; Luciana M. Rangel; Jandeson Brasil; Carolina D. Domingues; Christina Wyss Castelo Branco; Fábio Roland
Microbial Ecology | 2016
Luciana M. Rangel; Kemal Ali Ger; Lúcia H. S. Silva; Maria Carolina S. Soares; Elisabeth J. Faassen; Miquel Lürling
The FASEB Journal | 2014
Luciana M. Rangel; Caroline da Costa; Danielly da Costa; Jerson da Silva