Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luciane V. Mello is active.

Publication


Featured researches published by Luciane V. Mello.


Proteins | 2002

Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking.

Francislete R. Melo; Daniel J. Rigden; Octávio L. Franco; Luciane V. Mello; Maria B. Ary; Maria F. Grossi de Sá; Carlos Bloch

Higher plants produce several families of proteins with toxic properties, which act as defense compounds against pests and pathogens. The thionin family represents one family and comprises low molecular mass cysteine‐rich proteins, usually basic and distributed in different plant tissues. Here, we report the purification and characterization of a new thionin from cowpea (Vigna unguiculata) with proteinase inhibitory activity. Cowpea thionin inhibits trypsin, but not chymotrypsin, binding with a stoichiometry of 1:1 as shown with the use of mass spectrometry. Previous annotations of thionins as proteinase inhibitors were based on their erroneous identification as homologues of Bowman‐Birk family inhibitors. Molecular modeling experiments were used to propose a mode of docking of cowpea thionin with trypsin. Consideration of the dynamic properties of the cowpea thionin was essential to arrive at a model with favorable interface characteristics comparable with structures of trypsin‐inhibitor complexes determined by X‐ray crystallography. In the final model, Lys11 occupies the S1 specificity pocket of trypsin as part of a canonical style interaction. Proteins 2002;48:311–319.


Biochemical Journal | 2001

Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I.

Nikolaos E. Labrou; Luciane V. Mello; Yannis D. Clonis

The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by lowering the pK(a) of the thiol from 8.7 to 6.2. Steady-state kinetics fit well to a rapid equilibrium, random sequential Bi Bi mechanism, with intrasubunit modulation between the GSH binding site (G-site) and the electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent, and thermodynamic data suggest that product release is rate-limiting. Five residues of GST I (Ser(11), His(40), Lys(41), Gln(53) and Ser(67)), which are located in the G-site, were individually replaced with alanine and their structural and functional roles in the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction were investigated. On the basis of steady-state kinetics, difference spectroscopy and limited proteolysis studies it is concluded that these residues: (1) contribute to the affinity of the G-site for GSH, as they are involved in side-chain interaction with GSH; (2) influence GSH thiol ionization, and thus its reactivity; (3) participate in k(cat) regulation by affecting the rate-limiting step of the reaction; and (4) in the cases of His(40), Lys(41) and Gln(53) play an important role in the structural integrity of, and probably in the flexibility of, the highly mobile short 3(10)-helical segment of alpha-helix 2 (residues 35-46), as shown by limited proteolysis experiments. These structural perturbations are probably transmitted to the H-site through changes in Phe(35) conformation. This accounts for the modulation of K(CDNB)(m) by His(40), Lys(41) and Gln(53), and also for the intrasubunit communication between the G- and H-sites. Computer simulations using CONCOORD were applied to maize GST I monomer and dimer structures, each with bound lactoylglutathione, and the results were analysed by the essential dynamics technique. Differences in dynamics were found between the monomer and the dimer simulations showing the importance of using the whole structure in dynamic analysis. The results obtained confirm that the short 3(10)-helical segment of alpha-helix 2 (residues 35-46) undergoes the most significant structural rearrangements. These rearrangements are discussed in terms of enzyme catalytic mechanism.


Journal of Protein Chemistry | 2003

Molecular cloning of α-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: An approach to insect resistance

Osmundo Brilhante Oliveira-Neto; João A. N. Batista; Daniel J. Rigden; Octávio L. Franco; Rosana Falcão; Rodrigo da Rocha Fragoso; Luciane V. Mello; Roseane Cavalcanti dos Santos; Maria Fatima Grossi-de-Sa

Anthonomus grandis, the cotton boll weevil, causes severe cotton crop losses in North and South America. Here we demonstrate the presence of starch in the cotton pollen grains and young ovules that are the main A. grandis food source. We further demonstrate the presence of α-amylase activity, an essential enzyme of carbohydrate metabolism for many crop pests, in A. grandis midgut. Two α-amylase cDNAs from A. grandis larvae were isolated using RT-PCR followed by 5′ and 3′ RACE techniques. These encode proteins with predicted molecular masses of 50.8 and 52.7 kDa, respectively, which share 58% amino acid identity. Expression of both genes is induced upon feeding and concentrated in the midgut of adult insects. Several α-amylase inhibitors from plants were assayed against A. grandis α-amylases but, unexpectedly, only the BIII inhibitor from rye kernels proved highly effective, with inhibitors generally active against other insect amylases lacking effect. Structural modeling of Amylag1 and Amylag2 showed that different factors seem to be responsible for the lack of effect of 0.19 and α-AI1 inhibitors on A. grandis α-amylase activity. This work suggests that genetic engineering of cotton to express α-amylase inhibitors may offer a novel route to A. grandis resistance.


Proteins | 2002

Overlapping binding sites for trypsin and papain on a Kunitz‐type proteinase inhibitor from Prosopis juliflora

Octávio L. Franco; Maria F. Grossi de Sá; Maurício P. Sales; Luciane V. Mello; Adeliana S. Oliveira; Daniel J. Rigden

Proteinase inhibitors are among the most promising candidates for expression by transgenic plants and consequent protection against insect predation. However, some insects can respond to the threat of the proteinase inhibitor by the production of enzymes insensitive to inhibition. Inhibitors combining more than one favorable activity are therefore strongly favored. Recently, a known small Kunitz trypsin inhibitor from Prosopis juliflora (PTPKI) has been shown to possess unexpected potent cysteine proteinase inhibitory activity. Here we show, by enzyme assay and gel filtration, that, unlike other Kunitz inhibitors with dual activities, this inhibitor is incapable of simultaneous inhibition of trypsin and papain. These data are most readily interpreted by proposing overlapping binding sites for the two enzymes. Molecular modeling and docking experiments favor an interaction mode in which the same inhibitor loop that interacts in a canonical fashion with trypsin can also bind into the papain catalytic site cleft. Unusual residue substitutions at the proposed interface can explain the relative rarity of twin trypsin/papain inhibition. Other changes seem responsible for the relative low affinity of PTPKI for trypsin. The predicted coincidence of trypsin and papain binding sites, once confirmed, would facilitate the search, by phage display for example, for mutants highly active against both proteinases. Proteins 2002;49:335–341.


Biochemical Journal | 2008

S-nitrosylation of syntaxin 1 at Cys(145) is a regulatory switch controlling Munc18-1 binding

Zoë J. Palmer; Rory R. Duncan; James Johnson; Lu-Yun Lian; Luciane V. Mello; David Booth; Jeff W. Barclay; Margaret E. Graham; Robert D. Burgoyne; Ian A. Prior; Alan Morgan

Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys(145) of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys(145) mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin-Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys(145) may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.


FEBS Letters | 2010

Mining metagenomic data for novel domains: BACON, a new carbohydrate-binding module

Luciane V. Mello; Xin Chen; Daniel J. Rigden

Third‐generation sequencing has given new impetus to protein sequence database growth, revealing new domains. Description and analysis of these is required to further improve the coverage and utility of domain databases. A novel domain, here named BACON, was discovered from analysis of metagenomic data obtained from gut bacteria. Domain architectures unambiguously link its function to carbohydrate metabolism but a further strong connection to protease domains suggests that many BACON domains bind glycoproteins. Conserved residues in the BACON domain are also characteristic of carbohydrate binding while its biased phyletic distribution and other data suggest mucin as a potential specific target.


Journal of Molecular Biology | 2003

Insights Into the Catalytic Mechanism of Cofactor-Independent Phosphoglycerate Mutase from X-Ray Crystallography, Simulated Dynamics and Molecular Modeling

Daniel J. Rigden; Ejvis Lamani; Luciane V. Mello; James E. Littlejohn; Mark J. Jedrzejas

Phosphoglycerate mutases catalyze the isomerization of 2 and 3-phosphoglycerates, and are essential for glucose metabolism in most organisms. Here, we further characterize the 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus by determination of a high-resolution (1.4A) crystal structure of the wild-type enzyme and the crystal structure of its S62A mutant. The mutant structure surprisingly showed the replacement of one of the two catalytically essential manganese ions with a water molecule, offering an additional possible explanation for its lack of catalytic activity. Crystal structures invariably show substrate phosphoglycerate to be entirely buried in a deep cleft between the two iPGM domains. Flexibility analyses were therefore employed to reveal the likely route of substrate access to the catalytic site through an aperture created in the enzymes surface during certain stages of the catalytic process. Several conserved residues lining this aperture may contribute to orientation of the substrate as it enters. Factors responsible for the retention of glycerate within the phosphoenzyme structure in the proposed mechanism are identified by molecular modeling of the glycerate complex of the phosphoenzyme. Taken together, these results allow for a better understanding of the mechanism of action of iPGMs. Many of the results are relevant to a series of evolutionarily related enzymes. These studies will facilitate the development of iPGM inhibitors which, due to the demonstrated importance of this enzyme in many bacteria, would be of great potential clinical significance.


FEBS Letters | 2003

Identification and analysis of catalytic TIM barrel domains in seven further glycoside hydrolase families

Daniel J. Rigden; Mark J. Jedrzejas; Luciane V. Mello

Fold recognition results allocate catalytic triose phosphate isomerase (TIM) barrels to seven previously unassigned glycoside hydrolase (GH) families, numbers 29, 44, 50, 71, 84, 85 and 89, enabling prediction of catalytic residues. Modelling of GH family 50 suggests that it may be the common evolutionary ancestor of families 42 and 14. TIM barrels now comprise the catalytic domains of more than half of the assigned GH families, and catalyse a much larger variety of GH reactions than any other catalytic domain architecture. Only 327 GH sequences still have no structurally identified catalytic domain.


FEBS Letters | 1997

Analysis of the black-eyed pea trypsin and chymotrypsin inhibitor-α-chymotrypsin complex

Sonia Maria de Freitas; Luciane V. Mello; Maria Cristina Mattar da Silva; Gerrit Vriend; Goran Neshich; Manuel Mateus Ventura

The black‐eyed pea trypsin and chymotrypsin inhibitor (BTCI) is a member of the Bowman‐Birk protease inhibitor (BBI) family. The three‐dimensional model of the BTCI‐chymotrypsin complex was built based on the homology to Bowman‐Birk inhibitors with known structures. An extensive theoretical and experimental study of these known structures has been performed. The model confirms the ideas about Bowman‐Birk inhibitor structure‐function relations and agrees well with our experimental data (circular dichroism, IR and light scattering). The electrostatic potentials at the enzyme‐inhibitor contact surface reveal a pattern of complementary electrostatic potentials from which mutations can be inferred that could give these inhibitors an altered specificity.


Plant Molecular Biology | 1995

A corm-specific gene encodes tarin, a major globulin of taro (Colocasia esculenta L. Schott)

I. C. Bezerra; Luiz A. B. de Castro; Goran Neshich; Elionor Rita Pereira de Almeida; M.Fátima Grossi de Sá; Luciane V. Mello; Damares C. Monte-Neshich

A gene encoding a globulin from a major taro (Colocasia esculenta L. Schott) corm protein family, tarin (G1, ca. 28 kDa) was isolated from a λ Charon 35 library, using a cDNA derived from a highly abundant corm-specific mRNA, as probe. The gene, named tar1, and the corresponding cDNA were characterized and compared. No introns were found. The major transcription start site was determined by primer extension analysis. The gene has an open reading frame (ORF) of 765 bp, and the deduced amino acid sequence indicated a precursor polypeptide of 255 residues that is post-translationally processed into two subunits of about 12.5 kDa each. The deduced protein is 45% homologous to curculin, a sweet-tasting protein found in the fruit pulp of Curculigo latifolia and 40% homologous to a mannose-binding lectin from Galanthus nivalis. Significant similarity was also found at the nucleic acid sequence level with genes encoding lectins from plant species of the Amaryllidaceae and Lilliaceae families.

Collaboration


Dive into the Luciane V. Mello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Jedrzejas

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Goran Neshich

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Maria Fatima Grossi-de-Sa

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Octávio L. Franco

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Brass

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge