Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luciano B. Beheregaray is active.

Publication


Featured researches published by Luciano B. Beheregaray.


Molecular Ecology | 2000

SSCP is not so difficult: the application and utility of single‐stranded conformation polymorphism in evolutionary biology and molecular ecology

Paul Sunnucks; Alex C. C. Wilson; Luciano B. Beheregaray; Kyall R. Zenger; J. French; Andrea C. Taylor

All genetic markers are estimators of DNA nucleotide sequence variation. Rather than obtaining DNA sequence data, it is cheaper and faster to use techniques that estimate sequence variation, although this usually results in the loss of some information. SSCP (single‐stranded conformation polymorphism) offers a sensitive but inexpensive, rapid, and convenient method for determining which DNA samples in a set differ in sequence, so that only an informative subset need be sequenced. In short, most DNA sequence variation can be detected with relatively little sequencing. SSCP has been widely applied in medical diagnosis, yet few studies have been published in population genetics. The utility and convenience of SSCP is far from fully appreciated by molecular population biologists. We hope to help redress this by illustrating the application of a single simple SSCP protocol to mitochondrial genes, nuclear introns, microsatellites, and anonymous nuclear sequences, in a range of vertebrates and invertebrates.


Molecular Ecology | 2008

Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere

Luciano B. Beheregaray

Phylogeography is a young, vigorous and integrative field of study that uses genetic data to understand the history of populations. This field has recently expanded into many areas of biology and also into several historical disciplines of Earth sciences. In this review, I present a numerical synthesis of the phylogeography literature based on an examination of over 3000 articles published during the first 20 years of the field (i.e. from 1987 to 2006). Information from several topics needed to evaluate the progress, tendencies and deficiencies of the field is summarized for 10 major groups of organisms and at a global scale. The topics include the geography of phylogeographic surveys, comparative nature of studies, temporal scales and major environments investigated, and genetic markers used. I also identify disparities in research productivity between the developing and the developed world, and propose ways to reduce some of the challenges faced by phylogeographers from less affluent countries. Phylogeography has experienced explosive growth in recent years fuelled by developments in DNA technology, theory and statistical analysis. I argue that the intellectual maturation of the field will eventually depend not only on these recent developments, but also on syntheses of comparative information across different regions of the globe. For this to become a reality, many empirical phylogeographic surveys in regions of the Southern Hemisphere (and in developing countries of the Northern Hemisphere) are needed. I expect the information and views presented here will assist in promoting international collaborative work in phylogeography and in guiding research efforts at both regional and global levels.


Molecular Ecology | 2001

Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis

Luciano B. Beheregaray; Paul Sunnucks

The idengification of incipient ecological species represents an opportunity to investigate current evolutionary process where adaptive divergence and reproductive isolation are associated. In this study we analysed the genetic structure of marine and estuarine populations of the silverside fish Odontesthes argentinensis using nine microsatellite loci and 396 bp of the mitochondrial DNA (mtDNA) control region. Our main objective was to investigate the relationship among estuarine colonization, divergent selection and speciation in silversides. Significant genetic structure was detected among all marine and estuarine populations. Despite the low phylogeographic structure in mtDNA haplotypes, there was clear signal of local radiations of haplotypes in more ancient populations. Divergence among marine populations was interpreted as a combined result of homing behaviour, isolation by distance and drift. On the other hand, ecological shifts due to the colonization of estuarine habitats seem to have promoted rapid adaptive divergence and reproductive isolation in estuarine populations, which were considered as incipient ecological species. This conclusion is supported by the existence of a set of environmental factors required for successful reproduction of estuarine ecotypes. The pattern of genetic structure indicates that phenotypic and reproductive divergence evolved in the face of potential gene flow between populations. We suggest that the ‘divergence‐with‐gene‐flow’ model of speciation may account for the diversification of estuarine populations. The approach used can potentially idengify ‘incipient estuarine species’, being relevant to the investigation of the evolutionary relationships of silversides in several coastal regions of the world.


Ecology | 2007

Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin.

Sam C. Banks; Maxine P. Piggott; Jane E. Williamson; Ulysse Bove; Neil J. Holbrook; Luciano B. Beheregaray

Understanding the scale of marine population connectivity is critical for the conservation and sustainable management of marine resources. For many marine species adults are benthic and relatively immobile, so patterns of larval dispersal and recruitment provide the key to understanding marine population connectivity. Contrary to previous expectations, recent studies have often detected unexpectedly low dispersal and fine-scale population structure in the sea, leading to a paradigm shift in how marine systems are viewed. Nonetheless, the link between fine-scale marine population structure and the underlying physical and biological processes has not been made. Here we show that patterns of genetic structure and population connectivity in the broadcast-spawning and long-distance dispersing sea urchin Centrostephanus rodgersii are influenced by physical oceanographic and geographic variables. Despite weak genetic differentiation and no isolation-by-distance over thousands of kilometers among samples from eastern Australia and northern New Zealand, fine-scale genetic structure was associated with sea surface temperature (SST) variability and geography along the southeastern Australian coast. The zone of high SST variability is characterized by periodic shedding of eddies from the East Australian Current, and we suggest that ocean current circulation may, through its influence on larval transport and recruitment, interact with the genetic consequences of large variance in individual reproductive success to generate patterns of fine-scale patchy genetic structure. If proven consistent across species, our findings suggest that the optimal scale for fisheries management and reserve design should vary among localities in relation to regional oceanographic variability and coastal geography.


Journal of Biology | 2007

Cryptic biodiversity in a changing world

Luciano B. Beheregaray; Adalgisa Caccone

DNA studies are revealing the extent of hidden, or cryptic, biodiversity. Two new studies challenge paradigms about cryptic biodiversity and highlight the importance of adding a historical and biogeographic dimension to biodiversity research.


Molecular Ecology | 2004

Genetic evidence for sex‐biased dispersal in resident bottlenose dolphins (Tursiops aduncus)

Luciana M. Möller; Luciano B. Beheregaray

In most mammals males usually disperse before breeding, while females remain in their natal group or area. However, in odontocete cetaceans behavioural and/or genetic evidence from populations of four species indicate that both males and females remain in their natal group or site. For coastal resident bottlenose dolphins field data suggest that both sexes are philopatric to their natal site. Assignment tests and analyses of relatedness based on microsatellite markers were used to investigate this hypothesis in resident bottlenose dolphins, Tursiops aduncus, from two small coastal populations of southeastern Australia. Mean corrected assignment and mean relatedness were higher for resident females than for resident males. Only 8% of resident females had a lower probability than average of being born locally compared to 33% of resident males. Our genetic data contradict the hypothesis of bisexual philopatry to natal site and suggest that these bottlenose dolphins are not unusual amongst mammals, with females being the more philopatric and males the more dispersing sex.


Proceedings of the Royal Society of London B: Biological Sciences | 2001

Alliance membership and kinship in wild male bottlenose dolphins (Tursiops aduncus) of southeastern Australia

Luciana M. Möller; Luciano B. Beheregaray; Robert G. Harcourt; Michael Krützen

Bottlenose dolphins are one of only a few mammalian taxa where the males are known to cooperate within their social group in order to maintain mating access to single females against other males. Male bonds in bottlenose dolphins have been hypothesized as evolving through kinship and associated inclusive fitness effects. In this study we tested whether individually identified male bottlenose dolphins preferentially associate and form alliances with kin in a small coastal resident population of southeastern Australia using a combination of behavioural data, genetic sexing, sequences of the mitochondrial DNA control region and nuclear microsatellite markers. Males generally associated significantly more often than expected with one to three other males, with whom they jointly herded females for mating. Associations and alliance membership were not associated with either maternal kinship or genetic relatedness. The majority of male pairs within alliances were randomly related, although high relatedness values were found between males of different alliances in the resident population. These findings indicate that mechanisms other than kin selection may be foremost in the development and maintenance of cooperation between male bottlenose dolphins.


Molecular Ecology | 2000

Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method

M. A. Sloane; Paul Sunnucks; Deryn Alpers; Luciano B. Beheregaray; Andrea C. Taylor

The highly endangered northern hairy‐nosed wombat (Lasiorhinus krefftii) is extremely difficult to study in the wild, and its numbers correspondingly difficult to estimate. Disturbance to the animals caused by trapping and radio‐tracking may not only constitute an excessive risk to the population’s viability, but may also yield biased data. The results of a pilot study are presented, which clearly show noninvasive genotyping to be a highly feasible and reliable alternative censusing method for L. krefftii. The protocol can identify individual wombats from single hairs collected remotely at burrow entrances, using: (i) a panel of microsatellite markers giving individual‐specific genotypes; and (ii) a Y‐linked sexing marker in combination with a single‐copy X‐linked amplification control. Using just the eight most variable microsatellites (of 20 available), only one in 200 pairs of full‐sibs are predicted to share the same genotype. From 12 wombat hair samples collected on tape suspended over burrow entrances, three known female, two known male and an unknown wombat of each sex were identified. The approach will allow censusing of individuals that evade capture, and will also reveal some otherwise problematic aspects of the behaviour of this elusive animal.


BMC Genomics | 2013

RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species

Steve Smith; Louis Bernatchez; Luciano B. Beheregaray

BackgroundIdentifying genes of adaptive significance in a changing environment is a major focus of ecological genomics. Such efforts were restricted, until recently, to researchers studying a small group of model organisms or closely related taxa. With the advent of next generation sequencing (NGS), genomes and transcriptomes of virtually any species are now available for studies of adaptive evolution. We experimentally manipulated temperature conditions for two groups of crimson spotted rainbowfish (Melanotaenia duboulayi) and measured differences in RNA transcription between them. This non-migratory species is found across a latitudinal thermal gradient in eastern Australia and is predicted to be negatively impacted by ongoing environmental and climatic change.ResultsUsing next generation RNA-seq technologies on an Illumina HiSeq2000 platform, we assembled a de novo transcriptome and tested for differential expression across the treatment groups. Quality of the assembly was high with a N50 length of 1856 bases. Of the 107,749 assembled contigs, we identified 4251 that were differentially expressed according to a consensus of four different mapping and significance testing approaches. Once duplicate isoforms were removed, we were able to annotate 614 up-regulated transfrags and 349 that showed reduced expression in the higher temperature group.ConclusionsAnnotated blast matches reveal that differentially expressed genes correspond to critical metabolic pathways previously shown to be important for temperature tolerance in other fish species. Our results indicate that rainbowfish exhibit predictable plastic regulatory responses to temperature stress and the genes we identified provide excellent candidates for further investigations of population adaptation to increasing temperatures.


Behavioral Ecology and Sociobiology | 2006

Association patterns and kinship in female Indo-Pacific bottlenose dolphins (Tursiops aduncus) of southeastern Australia

Luciana M. Möller; Luciano B. Beheregaray; Simon J. Allen; Robert G. Harcourt

Kinship has been shown to be an important correlate of group membership and associations among many female mammals. In this study, we investigate association patterns in female Indo-Pacific bottlenose dolphins (Tursiops aduncus) inhabiting an embayment in southeastern Australia. We combine the behavioral data with microsatellite DNA and mitochondrial DNA data to test the hypotheses that genetic relatedness and maternal kinship correlate with associations and social clusters. Mean association between females was not significantly different from a random mean, but the standard deviation was significantly higher than a random standard deviation, indicating the presence of nonrandom associates in the dataset. A neighbor-joining tree, based on the distance of associations between females, identified four main social clusters in the area. Mean genetic relatedness between pairs of frequent female associates was significantly higher than that between pairs of infrequent associates. There was also a significant correlation between mtDNA haplotype sharing and the degree of female association. However, the mean genetic relatedness of female pairs within and between social clusters and the proportion of female pairs with the same and different mtDNA haplotypes within and between clusters were not significantly different. This study demonstrates that kinship correlates with associations among female bottlenose dolphins, but that kinship relations are not necessarily a prerequisite for membership in social clusters. We hypothesize that different forces acting on female bottlenose dolphin sociality appear to promote the formation of flexible groups which include both kin and nonkin.

Collaboration


Dive into the Luciano B. Beheregaray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C. Carvalho

Pontifícia Universidade Católica de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Ning L. Chao

Federal University of Amazonas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge