Luciano Mantovano
Tenaris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luciano Mantovano.
Volume 4: Pipelining in Northern and Offshore Environments; Strain-Based Design; Risk and Reliability; Standards and Regulations | 2012
Santiago Serebrinsky; Luciano Mantovano; Marcos de Souza; Martin Valdez; Hugo A. Ernst; Luis C. Chad
Oil exploration and production of offshore sources is continuously shifting towards increasing depths and more severe environmental conditions. Ultra deep waters are an objective in, e.g., the pre-salt layer off the Brazilian coast and in the Gulf of Mexico. Under these conditions, resistance to collapse of pipelines is a main concern. Increasing the collapse pressure pc is thus a primary objective, which would lead to a reduction of material and installation costs.To increase pc, it is fundamental to understand which variables affect it, and how to control these variables. For instance, it is well known that ovality, residual stresses, and material constitutive behavior have a direct effect on pc. Current efforts for improving pc of large diameter UOE pipes include an increase in flow stress by the application of a thermal cycle, similar to those typical of coating processes. These thermal treatments recover at least part of the early yielding due to the Bauschinger effect that develops during the collapse test, after the expansion stage.Predictive modeling of pc, based on an appropriate set of input variables, allows for an adequate design of deep- and ultra-deep water projects. In the present work, an assessment by finite element analysis of the requirements on material characterization tests for a reliable prediction of pc has been performed. The most appropriate testing direction is the transverse compression. Moreover, since for large diameter pipes the plastic strain levels attained at collapse are often below 0.2%, the sample should allow for an accurate determination of compression behavior in this very low deformation range. This is particularly relevant for cold-formed pipes, as with the UOE process. Based on these guidelines, a testing sample geometry and compression data processing methodology has been designed.The methodology has been applied to a series of UOE processed pipes that had been thermally treated. On one hand, compression samples were extracted and used for the FE calculation of pc. On the other hand, collapse tests were performed on the same pipes. Both the absolute values of pc, and the enhancement of pc due to thermal cycling, were accurately predicted.In addition, both the flow stress after thermal cycling, and the measured pc values, clearly show that the fabrication factor αfab used in the standard DNV OS-F101 should be set to αfab≥1 for an adequate rating of the pipes.Copyright
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering | 2012
Luciano Mantovano; Santiago Serebrinsky; Hugo A. Ernst; Teresa E. Perez; Martin Valdez; Marcos de Souza; Luis C. Chad
Large diameter UOE pipes are being increasingly used for the construction of offshore pipelines. Since oil discoveries are moving towards ultra deep water areas, collapse resistance is a key factor in the design of the pipelines. It has been demonstrated in previous works that the application of typical coating thermal treatments increases the collapse resistance of the pipes recovering the original strength of the plate. To improve the understanding of these effects, the Tenaris has embarked on a program of both, experimental testing and finite element modeling.Previous phases of this work formulated the basis for model development and described the 2D approach taken to model the various stages of manufacture, from the plate to the final pipe and the collapse test. More recent developments included some modeling enhancements, sensitivity analyses, and comparison of predictions to the results of full scale collapse testing.In the present work, 3D finite element analyses of collapse were performed and compared with the latest collapse and propagation tests performed by Tenaris, where the effect of typical coating thermal treatments was studied and significant increments in the collapse pressure of pipes were obtained. The numerical results show a good agreement with the experimental ones and could predict the increment produced in the collapse pressure by the effect of the thermal treatments. Comparison of the results with the predictions from API RP 1111 and DNV OS-F101 equations was also performed.The outcomes of this study will be employed to further optimize the collapse resistance of subsea linepipe in order to reduce material and offshore installation costs through the increment of the fabrication factor as stated in the DNV OSF101 standard.Copyright
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering | 2011
Luciano Mantovano; Mohamed R. Chebaro; Hugo A. Ernst; Marcos de Souza; Chris Timms; Luis C. Chad
The UOE-SAWL pipe manufacturing process introduces considerable plastic deformations and residual stresses to feedstock plate material. Previous experimental and analytical studies have demonstrated that the effects of this process, predominantly in its final expansion stage, significantly reduce the collapse resistance of deepwater linepipe. Finite element analyses, sensitivity analyses and full-scale tests were conducted by Tenaris and C-FER Technologies (C-FER) over the last several years to better comprehend the impact of cold forming on collapse resistance. This paper presents the findings of the latest segment of this ongoing study, the objective of which was to optimize the collapse resistance of UOE-SAWL linepipe by varying three key thermal ageing parameters: time, temperature and number of thermal cycles. Six X70M and four X80M UOE pipe samples were manufactured and thermally treated with varied parameters. Full-scale collapse and buckle propagation tests were then carried out in an experimental chamber that simulates deepwater conditions. These experimental results were evaluated with respect to collapse predictions from API RP 1111 and DNV OS-F101. Material and ring splitting tests were also performed on samples obtained from these pipes to better assess the extent of the UOE pipe collapse resistance recovery. The outcomes of this study will be employed to further optimize the collapse resistance of subsea linepipe in order to reduce material and offshore installation costs.Copyright
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014
Fábio Arroyo; Harold R. León; Ronaldo Silva; Luciano Mantovano; Rafael Familiar Solano; Fabio Braga de Azevedo
Large diameter UOE pipes are being increasingly used for the construction of offshore pipelines and in the last few year, since oil discoveries are moving towards ultra-deepwater areas, such as Pre-Salt in Brazil, collapse resistance is a key factor in the design of the pipelines the demand for pipes with high thickness near the limits for fabrication and installation capacity. It is known that the cold forming, and the final expansion in the UOE line pipe manufacturing process, reduces the elastic limit of the steel in subsequent compression. Due to this, the DNV collapse formula includes a fabrication factor that de-rates by a 15% the yield strength of UOE Pipes. However, DNV also recognizes the effect of thermal treatments and the code allows for improvement of the fabrication factor when heat treatment or external cold sizing (compression) is applied, if documented. In previous work [1] it was presented the qualification of UOE pipes with enhanced collapse capacity focusing the use of a fabrication factor (alpha-fab) equal to 1. A technology qualification process according to international standard has been performed. The main aspects of the qualification process were presented and included significant material, full scale testing and final analysis. In this paper, we compare those results with the ones of the new qualification tests analyzing the more important variables affecting the collapse resistance such as ovality, compressive material strength, thermal treatment control, etc. This new qualification obtained even better results than the previous one, which will allow the use of a fabrication factor equal to 1 directly in deepwater and ultra-deepwater offshore pipeline projects with a possible reduction in material and offshore installation costs and also potentially enhancing the feasibility of many challenging offshore projects.Copyright
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013
Santiago Serebrinsky; Luciano Mantovano; Fábio Arroyo; Martin Valdez; Hugo A. Ernst; Ronaldo Silva
Oil & Gas offshore exploration and production increase continuously in deep waters. This trend requires pipes with increasing collapse pressure (pc), which is the primary design variable. The prediction of pc, based on an appropriate set of input variables, allows for the appropriate design of deep and ultra-deep water projects.Elastic and plastic material behavior is one of the main factors affecting pc. International application codes (e.g., DNV OS-F101) incorporate the yield strength into their formulas for pc. In the present work, an assessment of the requirements on material characterization tests for a reliable prediction of pc has been performed. The most appropriate testing direction is the transverse compression. Moreover, since for large diameter pipes the plastic strain levels attained at collapse are often below 0.2%, the sample should allow for an accurate determination of compression behavior in this very low deformation range. This is particularly relevant for cold-formed pipes, as with the UOE process.Based on these guidelines, a testing procedure has been designed. This analysis has been applied to the prediction of the effect of thermal cycles on pc. Calculated values show a very good agreement with experimental pc values determined for a series of UOE processed pipes that had been thermally treated and collapsed.Copyright
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013
Fábio Arroyo; Rafael Familiar Solano; Luciano Mantovano; Fabio Braga de Azevedo; Hélio Alves; Doug Swanek; Ronaldo Silva; Hugo A. Ernst
Large diameter UOE pipes are being increasingly used for the construction of offshore pipelines. Since oil discoveries are moving towards ultra-deepwater areas, such as Pre-Salt in Brazil, collapse resistance is a key factor in the design of the pipelines.It is known that the cold forming, and the final expansion in the UOE linepipe manufacturing process, reduces the elastic limit of the steel in subsequent compression. Due to this, the DNV collapse formula includes a fabrication factor that derates by a 15% the yield strength of UOE Pipes. However, DNV also recognizes the effect of thermal treatments and the code allows for improvement of the fabrication factor when heat treatment or external cold sizing (compression) is applied, if documented.This paper presents the qualification of UOE pipes with enhanced collapse capacity focusing the use of a fabrication factor (αfab) equal to 1. TenarisConfab has performed a technology qualification process according to DNV-RP-A203 standard “Qualification Procedures for New Technology”. The main aspects of the qualification process are presented in this paper which included significant material and full scale testing, including combine load testing, and final analysis.The qualification process achieved successful results and this will allow use of a fabrication factor equal to 1 directly in deepwater and ultra-deepwater offshore pipeline projects with a possible reduction in material and offshore installation costs and also potentially enhancing the feasibility of many challenging offshore projects.Copyright
Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium | 2012
Sebastian Cravero; Luciano Mantovano; Hugo A. Ernst
Components with complex geometries and loading conditions frequently serve under cyclic loadings. This situation makes the evaluation of fatigue life in mechanical parts a fundamental issue. Particularly, for notched geometries and loadings involving plasticity, the cyclic stress and strain fields should be determined using finite elements models. The difficulties are increased since the constitutive equations of material under cyclic plasticity employed in the finite element codes is still an active research field and simplifications must be assumed always. In this paper a comprehensive study of strain-life method for fatigue estimation is presented. In addition, the difficulties found to establish a reliable methodology are enumerated.Copyright
ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B | 2010
Sebastian Cravero; Richard E. Bravo; Luciano Mantovano; Hugo A. Ernst
Particular geometries and loading conditions may have important effects on the stress fields of a given component promoting complex triaxial stress states and modifying the hydrostatic stress level. The yield condition of a ductile material is represented by the von Mises stress. However, the triaxial stress states have important effects on material toughness and ductility. This work presents a study of the effects of stress concentrators (different triaxial stress states) on material rupture. The aim is to determine the effects of hydrostatic stresses on the strain at failure in two low alloy high strength mill steels employed in field well and linepipe applications. Cylindrical specimens with different notch radius were tested to obtain different hydrostatic to von Mises stress ratios during tensile tests (h = σh /σVM ). The considered notch radii were 2.0, 0.8, 0.4 and 0.25 mm. The notched specimens were loaded in tension and applied load vs. reduction of transversal area data were recorded during the tests. Numerical simulations of the tensile tests allow reproducing the test in the numerical model and calculating the stress and strains fields during each stage of the applied loading. Finally, tables of strain at failure vs. stress triaxiality are obtained for both steels that allow determining the most appropriate material for critical applications.Copyright
2010 8th International Pipeline Conference, Volume 3 | 2010
Luciano Mantovano; Richard E. Bravo; Sebastian Cravero; Hugo A. Ernst
Up to the present, most of the pipes used in offshore applications installed with methods introducing plastic deformation have been seamless pipes; however, welded pipes can also be used. Welded pipes offers benefits over seamless pipe in terms of improved lead times, lower project costs, tighter dimensional tolerance and good control of mechanical properties and chemistry resulting in excellent weldability. During installation of welded pipes, failure by fracture, plastic collapse and local buckling may occur. In this work, the occurrence of the local buckling phenomenon, produced during the installation method, was evaluated. Numerical models were developed to study the effect of materials and geometrical parameters on the local bucking of pipes subjected to bending. Specifically, the loads and strains at which the plastic instability occurs were determined for each particular condition. In addition, the influence of longitudinal and girth welds on the local bucking occurrence was assessed.Copyright
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering | 2009
Chris Timms; Luciano Mantovano; Hugo A. Ernst; Rita G. Toscano; Duane DeGeer; Doug Swanek; Marcos de Souza; Luis C. Chad
It has been demonstrated in previous work that, for deepwater applications, the cold forming process involved in UOE pipe manufacturing significantly reduces pipe collapse strength. To improve the understanding of these effects, Tenaris has embarked on a program to model the stages of the UOE manufacturing process using finite element methods. Previous phases of this work formulated the basis for model development and described the 2D approach taken to model the various stages of manufacture. More recent developments included some modeling enhancements, sensitivity analyses, and comparison of predictions to the results of full-scale collapse testing performed at C-FER. This work has shown correlations between manufacturing parameters and collapse pressure predictions. The results of the latest phase of the research program are presented in this paper. This work consists of full-scale collapse testing and extensive coupon testing on samples collected from various stages of the UOE pipe manufacturing process including plate, UO, UOE, and thermally-aged UOE. Four UOE pipe samples manufactured with varying forming parameters were provided by Tenaris for this test program along with associated plate and UO samples. Full-scale collapse and buckle propagation tests were conducted on a sample from each of the four UOE pipes including one that was thermally aged. Additional coupon-scale work included measurement of the through-thickness variation of material properties and a thermal ageing study aimed at better understanding UOE pipe strength recovery. The results of these tests will provide the basis for further refinement of the finite element model as the program proceeds into the next phase.Copyright