Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luciano Ribeiro Filgueiras is active.

Publication


Featured researches published by Luciano Ribeiro Filgueiras.


Journal of Immunology | 2014

PPAR-γ/IL-10 Axis Inhibits MyD88 Expression and Ameliorates Murine Polymicrobial Sepsis

Ana Ferreira; Flavia Sisti; Fabiane Sônego; Suojuan Wang; Luciano Ribeiro Filgueiras; Stephanie L. Brandt; Ana Paula Moreira Serezani; Hong Du; Fernando Q. Cunha; José C. Alves-Filho; Carlos H. Serezani

Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1–dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ–mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.


PLOS ONE | 2012

Sepsis-Induced Acute Lung Injury (ALI) Is Milder in Diabetic Rats and Correlates with Impaired NFkB Activation

Luciano Ribeiro Filgueiras; Joilson O. Martins; Carlos H. Serezani; Vera Luiza Capelozzi; Marlise B. A. Montes; Sonia Jancar

Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of IκB and p65 subunit of NFκB phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NFκB activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of IκB and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NFκB, increased SOCS-1 and decreased MyD88 mRNA.


Journal of Immunology | 2014

Leukotriene B4 Enhances the Generation of Proinflammatory MicroRNAs To Promote MyD88-Dependent Macrophage Activation

Zhuo Wang; Luciano Ribeiro Filgueiras; Soujuan Wang; Ana Paula Moreira Serezani; Marc Peters-Golden; Sonia Jancar; C. Henrique Serezani

MicroRNAs are known to control TLR activation in phagocytes. We have shown that leukotriene (LT) B4 (LTB4) positively regulates macrophage MyD88 expression by decreasing suppressor of cytokine signaling-1 (SOCS-1) mRNA stability. In this study, we investigated the possibility that LTB4 control of MyD88 expression involves the generation of microRNAs. Our data show that LTB4, via its receptor B leukotriene receptor 1 (BLT1) and Gαi signaling, increased macrophage expression of inflammatory microRNAs, including miR-155, miR-146b, and miR-125b. LTB4-mediated miR-155 generation was attributable to activating protein-1 activation. Furthermore, macrophage transfection with antagomirs against miR-155 and miR-146b prevented both the LTB4-mediated decrease in SOCS-1 and increase in MyD88. Transfection with miR-155 and miR-146b mimics decreased SOCS-1 levels, increased MyD88 expression, and restored TLR4 responsiveness in both wild type and LT-deficient macrophages. To our knowledge, our data unveil a heretofore unrecognized role for the GPCR BLT1 in controlling expression of microRNAs that regulate MyD88-dependent activation of macrophages.


Science Signaling | 2015

Leukotriene B4–mediated sterile inflammation promotes susceptibility to sepsis in a mouse model of type 1 diabetes

Luciano Ribeiro Filgueiras; Stephanie L. Brandt; Soujuan Wang; Zhuo Wang; David L. Morris; Carmella Evans-Molina; Raghavendra G. Mirmira; Sonia Jancar; C. Henrique Serezani

Inhibiting the production of a leukotriene may help type 1 diabetic patients from succumbing to sepsis. Preventing sepsis in type 1 diabetics Patients with type 1 diabetes have chronic systemic inflammation and are more prone to developing sepsis. Filgueiras et al. found that mice that are a model for type 1 diabetes had higher amounts of leukotriene B4, a proinflammatory lipid, and of 5-lipoxygenase, the enzyme that produces leukotriene B4. Mice with type 1 diabetes that were treated with an inhibitor of 5-lipoxygenase survived sepsis and had decreased markers of inflammation, suggesting that targeting 5-lipoxygenase to prevent the production of leukotriene B4 could decrease the susceptibility of type 1 diabetic patients to sepsis. Type 1 diabetes mellitus (T1DM) is associated with chronic systemic inflammation and enhanced susceptibility to systemic bacterial infection (sepsis). We hypothesized that low insulin concentrations in T1DM trigger the enzyme 5-lipoxygenase (5-LO) to produce the lipid mediator leukotriene B4 (LTB4), which triggers systemic inflammation that may increase susceptibility to polymicrobial sepsis. Consistent with chronic inflammation, peritoneal macrophages from two mouse models of T1DM had greater abundance of the adaptor MyD88 (myeloid differentiation factor 88) and its direct transcriptional effector STAT-1 (signal transducer and activator of transcription 1) than macrophages from nondiabetic mice. Expression of Alox5, which encodes 5-LO, and the concentration of the proinflammatory cytokine interleukin-1β (IL-1β) were also increased in peritoneal macrophages and serum from T1DM mice. Insulin treatment reduced LTB4 concentrations in the circulation and Myd88 and Stat1 expression in the macrophages from T1DM mice. T1DM mice treated with a 5-LO inhibitor had reduced Myd88 mRNA in macrophages and increased abundance of IL-1 receptor antagonist and reduced production of IL-β in the circulation. T1DM mice lacking 5-LO or the receptor for LTB4 also produced less proinflammatory cytokines. Compared to wild-type or untreated diabetic mice, T1DM mice lacking the receptor for LTB4 or treated with a 5-LO inhibitor survived polymicrobial sepsis, had reduced production of proinflammatory cytokines, and had decreased bacterial counts. These results uncover a role for LTB4 in promoting sterile inflammation in diabetes and the enhanced susceptibility to sepsis in T1DM.


Journal of Investigative Medicine | 2017

Adipose tissue inflammation in insulin resistance: review of mechanisms mediating anti-inflammatory effects of omega-3 polyunsaturated fatty acids

Mandana Pahlavani; Theresa Ramalho; Iurii Koboziev; Monique LeMieux; Shasika Jayarathne; Latha Ramalingam; Luciano Ribeiro Filgueiras; Naima Moustaid-Moussa

Obesity is an increasingly costly and widespread epidemic, effecting 1 in 10 adults worldwide. It has been causally linked with both the metabolic syndrome and insulin resistance, both of which are associated with increased chronic inflammation. The exact mechanisms through which inflammation may contribute to both MetS and IR are numerous and their details are still largely unknown. Recently, micro-RNAs (miRNAs) have emerged as potential interventional targets due to their potential preventive roles in the pathogenesis of several diseases, including MetS and obesity. The purpose of this review paper is to discuss some of the known roles of miRNAs as mediators of inflammation-associated obesity and IR and how omega-3 polyunsaturated fatty acids may be used as a nutritional intervention for these disorders.


Journal of Diabetes and Its Complications | 2017

Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice

Luciano Ribeiro Filgueiras; Stephanie L. Brandt; Theresa Ramalho; Sonia Jancar; C. Henrique Serezani

AIMS To investigate the hypothesis that alteration in histone acetylation/deacetylation triggers aberrant STAT1/MyD88 expression in macrophages from diabetics. Increased STAT1/MyD88 expression is correlated with sterile inflammation in type 1 diabetic (T1D) mice. METHODS To induce diabetes, we injected low-doses of streptozotocin in C57BL/6 mice. Peritoneal or bone marrow-differentiated macrophages were cultured in 5mM (low) or 25mM (high glucose). ChIP analysis of macrophages from nondiabetic or diabetic mice was performed to determine acetylation of lysine 9 in histone H3 in MyD88 and STAT1 promoter regions. Macrophages from diabetic mice were treated with the histone acetyltransferase inhibitor anacardic acid (AA), followed by determination of mRNA expression by qPCR. RESULTS Increased STAT1 and MyD88 expression in macrophages from diabetic but not naive mice cultured in low glucose persisted for up to 6days. Macrophages from diabetic mice exhibited increased activity of histone acetyltransferases (HAT) and decreased histone deacetylases (HDAC) activity. We detected increased H3K9Ac binding to Stat1/Myd88 promoters in macrophages from T1D mice and AA in vitro treatment reduced STAT1 and MyD88 mRNA expression. CONCLUSIONS/INTERPRETATION These results indicate that histone acetylation drives elevated Stat1/Myd88 expression in macrophages from diabetic mice, and this mechanism may be involved in sterile inflammation and diabetes comorbidities.


BMC Pulmonary Medicine | 2014

Sepsis-induced lung inflammation is modulated by insulin

Luciano Ribeiro Filgueiras; Vera Luiza Capelozzi; Joilson O. Martins; Sonia Jancar

BackgroundWe have previously shown that diabetic rats are more susceptible to sepsis, but that the Acute lung injury (ALI) secondary to sepsis is less intense than in non-diabetics. In the present study, we further investigated the ALI-secondary to sepsis in diabetic rats and the effect of insulin treatment.MethodsDiabetes was induced in male Wistar rats by alloxan and sepsis by cecal ligation and puncture surgery (CLP). Some diabetic rats were given neutral protamine Hagedorn (NPH) insulin (4 IU, s.c.) 2 h before CLP. Six h later, the lungs were examined for edema, cell infiltration and prostaglandin-E2 (PGE2) levels in the bronchoalveolar lavage (BAL).ResultsThe results confirmed that leukocyte infiltration and edema were milder in diabetic rats with sepsis. After insulin treatment, the lung inflammation in diabetics increased to levels comparable to the non-diabetics. The BAL concentration of PGE2 was also lower in diabetics with sepsis, and increased after insulin treatment. Sepsis was followed by early fibroblast activation in the lung parenchyma, evaluated by increased transforming growth factor (TGF)-β and smooth muscle actin (α-SMA) expression, as well as an elevated number of cells with myofibroblasts morphology. These events were significantly lower in diabetic rats and increased after insulin treatment.ConclusionThe results show that insulin modulates the early phase of inflammation and myofibroblast differentiation in diabetic rats.


Science Signaling | 2018

Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis

Flavia Sisti; Soujuan Wang; Stephanie L. Brandt; Nicole L. Glosson-Byers; Lindsey D. Mayo; Young Min Son; Sarah Sturgeon; Luciano Ribeiro Filgueiras; Sonia Jancar; Hector R. Wong; Charles S. Dela Cruz; Nathaniel Andrews; José C. Alves-Filho; Fernando Q. Cunha; C. Henrique Serezani

Nuclear localization of the phosphatase PTEN prevents cytokine storm–mediated organ injury during sepsis. PTEN and sepsis The uncontrolled production of proinflammatory factors is a leading cause of organ dysfunction during sepsis. As well as being activated by microbial products, Toll-like receptors (TLRs) are activated by injury-associated danger signals. Almost all TLR-dependent cytokine production depends on the adaptor protein MyD88. Sisti et al. found that the abundance of the mRNA encoding the lipid and protein phosphatase PTEN was increased in mice after surgical induction of sepsis. Inhibition or knockdown of PTEN during sepsis resulted in increased inflammation, tissue injury, and mortality, which was associated with an increase in MyD88 abundance. PTEN activation induced the production of microRNAs that targeted Myd88 mRNA. Preventing the nuclear translocation of PTEN resulted in the cytosolic localization of a microRNA-processing complex and a failure to target MyD88. Together, these results suggest that the PTEN-dependent microRNA generation targets MyD88 to limit the damaging effects of sepsis. Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN–mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.


JCI insight | 2018

Excessive localized leukotriene B4 levels dictate poor skin host defense in diabetic mice

Stephanie L. Brandt; Sue Wang; Naiara Naiana Dejani; Nathan Klopfenstein; Seth Winfree; Luciano Ribeiro Filgueiras; Brian P. McCarthy; Paul R. Territo; C. Henrique Serezani

Poorly controlled diabetes leads to comorbidities and enhanced susceptibility to infections. While the immune components involved in wound healing in diabetes have been studied, the components involved in susceptibility to skin infections remain unclear. Here, we examined the effects of the inflammatory lipid mediator leukotriene B4 (LTB4) signaling through its receptor B leukotriene receptor 1 (BLT1) in the progression of methicillin-resistant Staphylococcus aureus (MRSA) skin infection in 2 models of diabetes. Diabetic mice produced higher levels of LTB4 in the skin, which correlated with larger nonhealing lesion areas and increased bacterial loads compared with nondiabetic mice. High LTB4 levels were also associated with dysregulated cytokine and chemokine production, excessive neutrophil migration but impaired abscess formation, and uncontrolled collagen deposition. Both genetic deletion and topical pharmacological BLT1 antagonism restored inflammatory response and abscess formation, followed by a reduction in the bacterial load and lesion area in the diabetic mice. Macrophage depletion in diabetic mice limited LTB4 production and improved abscess architecture and skin host defense. These data demonstrate that exaggerated LTB4/BLT1 responses mediate a derailed inflammatory milieu that underlies poor host defense in diabetes. Prevention of LTB4 production/actions could provide a new therapeutic strategy to restore host defense in diabetes.


Journal of Immunobiology | 2017

Platelet-activation factor receptor induces interleukin 10 production through STAT3 activation in dendritic cells

Marianna M. Koga; Luciano Ribeiro Filgueiras; Sonia Jancar; Francisco J. Rios

The activation of the platelet-activating factor receptor (PAFR) is associated to a suppressor phenotype in macrophages and dendritic cells (DCs). In the present study, we investigated mechanisms underlying the production of the interleukin 10 (IL-10) through PAFR activation in murine DCs. For this purpose, BALB/c mice bone marrow-derived DCs were differentiated by GM-CSF treatment and stimulated with LPS in the presence of the PAFR antagonist WEB2086. Signalling pathways downstream to TLR4 activation were investigated. We found that LPS stimulus induced PAFR ligands generation by DCs, but it did not affect the PAFR expression. The LPS-induced IL-10 production was found to be partially dependent of PAFR, since it was reduced in the presence of WEB2086. The IL-10 production through PAFR activation was independent on CREB and PPARγ, as the treatment with selective inhibitors of these pathways did not affect the IL-10 production. TLR4 adaptor molecules (MyD88 and TRIF) expression, MAPK, or NF-κB (p105/50 and p65 subunits) activation pathways were also excluded, since they were not affected by the treatment with WEB2086. The blockage of PAFR by WEB2086 downregulated the STAT3 (Tyr705) phosphorylation induced by LPS. Additionally, DCs treated with STAT3 inhibitor (S3I-201) showed reduced IL-10 production to the same levels observed in DCs treated with WEB2086. The requirement of STAT3 was confirmed in PAFR-KO DCs, since the STAT3 inhibition did not affect IL-10 production by these cells. Our data show an additional molecular mechanism whereby PAFR contributes to IL-10 production in DCs and support the importance of the PAFR activation in DCs phenotype and function.

Collaboration


Dive into the Luciano Ribeiro Filgueiras's collaboration.

Top Co-Authors

Avatar

Sonia Jancar

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge