Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luciano Sacchi is active.

Publication


Featured researches published by Luciano Sacchi.


Scientific Reports | 2015

Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects

Elena Gonella; Massimo Pajoro; Massimo Marzorati; Elena Crotti; Mauro Mandrioli; Marianna Pontini; Daniela Bulgari; Ilaria Negri; Luciano Sacchi; Bessem Chouaia; Daniele Daffonchio; Alberto Alma

Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector

Guido Favia; Irene Ricci; Claudia Damiani; Noura Raddadi; Elena Crotti; Massimo Marzorati; Aurora Rizzi; Roberta Urso; Lorenzo Brusetti; Sara Borin; Diego Mora; Patrizia Scuppa; Luciano Pasqualini; Emanuela Clementi; Marco Genchi; Silvia Corona; Ilaria Negri; G. Grandi; Alberto Alma; L. Kramer; Fulvio Esposito; Claudio Bandi; Luciano Sacchi; Daniele Daffonchio

Here, we show that an α-proteobacterium of the genus Asaia is stably associated with larvae and adults of Anopheles stephensi, an important mosquito vector of Plasmodium vivax, a main malaria agent in Asia. Asaia bacteria dominate mosquito-associated microbiota, as shown by 16S rRNA gene abundance, quantitative PCR, transmission electron microscopy and in situ-hybridization of 16S rRNA genes. In adult mosquitoes, Asaia sp. is present in high population density in the female gut and in the male reproductive tract. Asaia sp. from An. stephensi has been cultured in cell-free media and then transformed with foreign DNA. A green fluorescent protein-tagged Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission. The larval gut and the male reproductive system were also colonized by the transformed Asaia sp. strain. As an efficient inducible colonizer of mosquitoes that transmit Plasmodium sp., Asaia sp. may be a candidate for malaria control.


International Journal for Parasitology | 1999

Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia

Claudio Bandi; John W. McCall; Claudio Genchi; Silvia Corona; Luigi Venco; Luciano Sacchi

Wolbachia endosymbiotic bacteria have been shown to be widespread among filarial worms and could thus play some role in the biology of these nematodes. Indeed, tetracycline has been shown to inhibit both the development of adult worms from third-stage larvae and the development of the microfilaraemia in jirds infected with Brugia pahangi. The possibility that these effects are related to the bacteriostatic activity of tetracycline on Wolbachia symbionts should be considered. Here we show that tetracycline treatment is very effective in blocking embryo development in two filarial nematodes, B. pahangi and Dirofilaria immitis. Embryo degeneration was documented by TEM, while the inhibition of the transovarial transmission of Wolbachia was documented by PCR. Phylogenetic analysis on the ssrDNA sequence of the Wolbachia of B. pahangi confirms that the phylogeny of the bacterial endosymbionts is consistent with that of the host worms. The possibility that tetracycline inhibition of embryo development in B. pahangi and D. immitis is determined by cytoplasmic incompatibility is discussed.


Proceedings of the Royal Society of London. Series B, Biological Sciences (United Kingdom) | 1994

Flavobacteria as intracellular symbionts in cockroaches

Claudio Bandi; Giuseppe Damiani; Lorenzo Magrassi; Aldo Grigolo; Renato Fani; Luciano Sacchi

Animal cells are the sole habitat for a variety of bacteria. Molecular sequence data have been used to position a number of these intracellular microorganisms in the overall scheme of eubacterial evolution. Most of them have been classified as proteobacteria or chlamydiae. Here we present molecular evidence placing an intracellular symbiont among the flavobacteria-bacteroides. This microorganism inhabits specialized cells in the cockroach fat body and has been described as a mutualistic endosymbiont of uncertain phylogenetic position. The small subunit ribosomal DNA of these bacteria was analysed after polymerase chain reaction amplification to investigate their phylogeny. The endosymbionts of five species of cockroaches were found to make up a coherent group with no close relatives within the eubacterial phylum defined by the flavobacteria. In addition, the relationships among the endosymbionts, as revealed by DNA sequence data, appeared to be congruent with the host taxonomic relationships. Based on the host fossil record, a tentative calibration of the nucleotide substitution rate for the cockroach flavobacteria gave results congruent with those obtained for the aphid endosymbiotic proteobacteria.


Applied and Environmental Microbiology | 2010

Acetic Acid Bacteria, Newly Emerging Symbionts of Insects

Elena Crotti; Aurora Rizzi; Bessem Chouaia; Irene Ricci; Guido Favia; Alberto Alma; Luciano Sacchi; Kostas Bourtzis; Mauro Mandrioli; Ameur Cherif; Claudio Bandi; Daniele Daffonchio

ABSTRACT Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects.


Proceedings of the Royal Society of London Series B Biological Sciences | 1995

The establishment of intracellular symbiosis in an ancestor of cockroaches and termites

Claudio Bandi; Massimo Sironi; Giuseppe Damiani; Lorenzo Magrassi; Christine A. Nalepa; Ugo Laudani; Luciano Sacchi

All cockroaches examined so far have been found to harbour a bacterial endosymbiont in specialized cells of the fat body, whereas Mastotermes darwiniensis is the only termite currently known to intracellular symbiont. The localization and mode of transmission of these bacteria are surprisingly similar, but so far no data have been published on their phylogenetic relationships. To address this issue, molecular sequence data were obtained from the genes encoding the small subunit ribosomal RNA of the M. darwiniensis endosymbiont, and compared with those obtained from endosymbionts of seven species of cockroaches. Molecular phylogenetic analysis unambiguously placed all these bacteria among the flavobacteria-bacteroides, indicating that the endosymbiont of M. darwiniensis is the sister group to the cockroach endosymbionts examined. Additionally, nucleotide divergence between the endosymbionts appears to be congruent with the palaeontological data on the hosts’s evolution. These results support previous claims that the original infection occurred in an ancestor common to cockroaches and termites. A loss of endosymbionts should subsequently have occurred in all termite lineages, except that which gave rise to M. darwiniensis.


International Journal for Parasitology | 2008

Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs

Chiara Bazzocchi; Michele Mortarino; G. Grandi; L. Kramer; Claudio Genchi; Claudio Bandi; Marco Genchi; Luciano Sacchi; John W. McCall

There is still a pressing need for effective adulticide treatment for human and animal filarial infections. Like many filarial nematodes, Dirofilaria immitis, the causative agent of canine heartworm disease, harbours the bacterial endosymbiont Wolbachia, which has been shown to be essential for worm development, fecundity and survival. Here the authors report the effect of different treatment regimens in dogs experimentally infected with adult D. immitis on microfilariemia, antigenemia, worm recovery and Wolbachia content. Treatment with ivermectin (IVM; 6 microg/kg per os weekly) combined with doxycycline (DOXY; 10 mg/kg/day orally from Weeks 0-6, 10-12, 16-18, 22-26 and 28-34) resulted in a significantly faster decrease of circulating microfilariae and higher adulticidal activity compared with either IVM or DOXY alone. Quantitative PCR analysis of ftsZ (Wolbachia DNA) and 18S rDNA (nematode DNA) absolute copy numbers showed significant decreases in Wolbachia content compared with controls in worms recovered from DOXY-treated dogs that were not, however, associated with worm death. Worms from IVM/DOXY-treated dogs, on the other hand, had Wolbachia/nematode DNA ratios similar to those of control worms, suggesting a loss of both Wolbachia and nematode DNA as indicated by absolute copy number values. Histology and transmission electron microscopy of worms recovered from the IVM/DOXY combination group showed complete loss of uterine content in females and immunohistochemistry for Wolbachia was negative. Results indicate that the combination of these two drugs causes adult worm death. This could have important implications for control of human and animal filarial infections.


International Journal for Parasitology | 1999

Trichinella papuae n.sp. (Nematoda), a new non-encapsulated species from domestic and sylvatic swine of Papua New Guinea.

Edoardo Pozio; Ifor L. Owen; G. La Rosa; Luciano Sacchi; P. Rossi; Silvia Corona

Encapsulated and non-encapsulated species of the genus Trichinella are widespread in sylvatic animals in almost all zoogeographical regions. In sylvatic animals from Tasmania (Australian region), only the non-encapsulated species Trichinella pseudospiralis has been reported. Between 1988 and 1998, non-encapsulated larvae of Trichinella were detected in five domestic pigs and six wild boars from a remote area of Papua New Guinea. Morphological, biological, and molecular studies carried out on one strain isolated from a wild boar in 1997 suggest that these parasites belong to a new species, which has been named Trichinella papuae n.sp. This species can be identified by the morphology of muscle larvae, which lack a nurse cell in host muscles, and whose total length is one-third greater than that of the other non-encapsulated species, T. pseudospiralis. Adults of T. papuae do not cross with adults of the other species and genotypes. Muscle larvae of T. papuae are unable to infect birds, whereas those of T. pseudospiralis do. The expansion segment V of the large subunit of the ribosomal DNA differs from that of the other species and genotypes. All of these features allow for the easy identification of T. papuae, even in poorly equipped laboratories. The discovery and identification of a second non-encapsulated species in the Australian region strongly supports the existence of two evolutionary lines in the genus Trichinella, which differ in terms of the capacity of larvae to induce a modification of the muscle cell into a nurse cell.


Environmental Microbiology | 2009

Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders

Elena Crotti; Claudia Damiani; Massimo Pajoro; Elena Gonella; Aurora Rizzi; Irene Ricci; Ilaria Negri; Patrizia Scuppa; Paolo Rossi; Patrizia Ballarini; Noura Raddadi; Massimo Marzorati; Luciano Sacchi; Emanuela Clementi; Marco Genchi; Mauro Mandrioli; Claudio Bandi; Guido Favia; Alberto Alma; Daniele Daffonchio

Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross-colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host-specific biological characteristics. This versatility is an important property for the development of symbiont-based control of different vector-borne diseases.


International Journal for Parasitology | 2002

Trichinella zimbabwensis n.sp. (Nematoda), a new non-encapsulated species from crocodiles (Crocodylus niloticus) in Zimbabwe also infecting mammals

Edoardo Pozio; C.M Foggin; Gianluca Marucci; G. La Rosa; Luciano Sacchi; Silvia Corona; P. Rossi; S. Mukaratirwa

Since 1995, Trichinella larvae have been detected in 39.5% of farmed crocodiles (Crocodylus niloticus) in Zimbabwe. Morphological, biological, biochemical and molecular studies carried out on one isolate from a farmed crocodile in 2001 support the conclusion that this parasite belongs to a new species, which has been named Trichinella zimbabwensis n.sp. This species, whose larvae are non-encapsulated in host muscles, infects both reptiles and mammals. The morphology of adults and larvae is similar to that of Trichinella papuae. Adults of T. zimbabwensis cross in both directions with adults of T. papuae (i.e. male of T. zimbabwensis per female of T. papuae and male of T. papuae per female of T. zimbabwensis), producing F1 offspring which produce very few and less viable F2 larvae. Muscle larvae of T. zimbabwensis, like those of T. papuae, do not infect birds. Three allozymes (of a total of 10) are diagnostic between T. zimbabwensis and T. papuae, and five are diagnostic between T. zimbabwensis and Trichinella pseudospiralis, the third non-encapsulated species. The percentage of the pairwise alignment identity between T. zimbabwensis and the other Trichinella species for the cytochrome oxidase subunit I gene, the large subunit ribosomal-DNA (mt-lsrDNA) gene and the expansion segment five, shows that T. zimbabwensis is more similar to the two non-encapsulated species T. papuae (91% for cytochrome oxidase I; 96% for mt-lsrDNA; and 88% for expansion segment five) and T. pseudospiralis (88% for cytochrome oxidase I; 90% for mt-lsrDNA; and 66-73% for expansion segment five) than to any of the encapsulated species (85-86% for cytochrome oxidase I; 88-89% for mt-lsrDNA; and 71-79% for expansion segment five). This is the first non-encapsulated species discovered in Africa. The finding of a new Trichinella species that infects both reptiles and mammals suggests that the origin of Trichinella parasites dates back further than previously believed and can contribute to understanding the phylogeny and the epidemiology of the genus Trichinella.

Collaboration


Dive into the Luciano Sacchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Daffonchio

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Favia

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Ricci

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Mandrioli

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge