Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucie Dehouck is active.

Publication


Featured researches published by Lucie Dehouck.


Laboratory Investigation | 2005

Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium

Caroline Coisne; Lucie Dehouck; Christelle Faveeuw; Yannick Delplace; Florence Miller; Christophe Landry; Céline Morissette; Laurence Fenart; Roméo Cecchelli; Patrick Tremblay; Bénédicte Dehouck

Although cerebral endothelium disturbance is commonly observed in central nervous system (CNS) inflammatory pathologies, neither the cause of this phenomenon nor the effective participation of blood–brain barrier (BBB) in such diseases are well established. Observations were mostly made in vivo using mouse models of chronic inflammation. This paper presents a new mouse in vitro model suitable for the study of underlying mechanistic events touching BBB functions during CNS inflammatory disturbances. This model consists of a coculture with both primary cell types isolated from mice. Mouse brain capillary endothelial cell (MBCEC)s coming from brain capillaries are in culture with their in vivo partners and form differentiated monolayers that retain endothelial markers and numerous phenotypic properties of in vivo cerebral endothelium, such as: (1) peripheral distribution of tight junction proteins (occludin, claudin-5, claudin-3 and JAM-1); (2) high trans-endothelium electrical resistance value; (3) attenuated paracellular flux of sucrose and inulin; (4) P-gp expression; (5) no MECA-32 expression. Furthermore, this endothelium expresses cell adhesion molecules described in vivo and shows intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 upregulation under lipopolysaccharide-treatment. Therefore, this well-differentiated model using autologous cells appears as a suitable support to reconstitute pathological in vitro BBB model.


PLOS ONE | 2014

A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

Roméo Cecchelli; Sezin Aday; Emmanuel Sevin; Catarina Almeida; Maxime Culot; Lucie Dehouck; Caroline Coisne; Britta Engelhardt; Marie-Pierre Dehouck; Lino Ferreira

The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.


Current Neurovascular Research | 2009

Peroxisome Proliferator-Activated Receptor-α Activation Protects Brain Capillary Endothelial Cells from Oxygen-Glucose Deprivation-Induced Hyperpermeability in the Blood-Brain Barrier

Caroline Mysiorek; Maxime Culot; Lucie Dehouck; Bruno Derudas; Bart Staels; Régis Bordet; Roméo Cecchelli; Laurence Fenart; Vincent Berezowski

That promising neuroprotectants failed to demonstrate benefit against stroke highlights the great difficulties to translate preclinical pharmacological effects in clinical outcomes. Part of this hurdle implies the complex response to injury of the neurovascular unit increasing the cerebrovascular permeability at the level of the blood-brain barrier (BBB). Previous studies reported neuroprotection in animal models upon activation of the nuclear receptor PPARα (peroxisome proliferator-activated receptor) α, but the cellular targets at the BBB level remain largely unexplored. Here, to study whether PPAR-α activation acts on BBB permeability, we adapted a mouse BBB cell model to ischaemic conditions at the stage of occlusion defined in vitro as oxygen-glucose deprivation (OGD). This model consists of a co-culture of brain capillary endothelial cells (ECs) on a filter insert placed upon a rat glial cell culture. The EC monolayer permeability increase induced by 4 h of OGD was significantly restricted after treatment with the PPAR-α agonist fenofibric acid (FA) 24 h before or at the onset of OGD. Treatments of separated ECs or glial cells showed that this protective effect was conferred by BBB ECs but not glial cells. Furthermore, co-cultures with ECs from PPAR-α-deficient mice revealed that FA had no effect on OGD-induced hyperpermeability. No transcriptional modulation of classical PPAR-α target genes such as SOD, ICAM-1, VCAM-1, ACO, CPT-1, PDK-4 or ET-1 was observed in wild type mouse ECs. In conclusion, these results suggest that part of the preventive PPAR-α-mediated protection may occur via BBB ECs by limiting hyperpermeability.


Journal of Alzheimer's Disease | 2012

Brain pericytes ABCA1 expression mediates cholesterol efflux but not cellular amyloid-β peptide accumulation.

Julien Saint-Pol; Marie-Christine Boucau; Pietra Candela; Lucie Dehouck; Roméo Cecchelli; Marie-Pierre Dehouck; Laurence Fenart; Fabien Gosselet

In brain, excess cholesterol is metabolized into 24S-hydroxycholesterol (24S-OH-chol) and eliminated into the circulation across the blood-brain barrier. 24S-OH-chol is a natural agonist of the nuclear liver X receptors (LXRs) involved in peripheral cholesterol homeostasis. The effects of this oxysterol on the pericytes embedded in the basal lamina of this barrier (close to the brain compartment) have not been previously studied. We used primary cultures of brain pericytes to demonstrate that the latter express LXR nuclear receptors and their target gene ATP-binding cassette, sub-family A, member 1 (ABCA1), known to be one of the major transporters involved in peripheral lipid homeostasis. Treatment with 24S-OH-chol caused an increase in ABCA1 expression that correlated with a reverse cholesterol transfer to apolipoprotein E, apolipoprotein A-I, and high density lipoprotein particles. Inhibition of ABCA1 decreased this efflux. As pericytes are able to internalize the amyloid-β peptides which accumulate in brain of Alzheimers disease patients, we then investigated the effects of 24S-OH-chol on this process. We found that the cellular accumulation process was not modified by 24S-OH-chol treatment. Overall, our results highlight the importance of the LXR/ABCA1 system in brain pericytes and suggest a new role for these cells in brain cholesterol homeostasis.


Neuroscience Letters | 2006

Differential expression of selectins by mouse brain capillary endothelial cells in vitro in response to distinct inflammatory stimuli.

Caroline Coisne; Christelle Faveeuw; Yannick Delplace; Lucie Dehouck; Florence Miller; Roméo Cecchelli; Bénédicte Dehouck

Increased lymphocyte trafficking across blood-brain barrier (BBB) is a prominent and early event in inflammatory and immune-mediated CNS diseases. The adhesion molecules that control the entry of leukocytes into the brain have not been fully elucidated. Although the role of ICAM-1 and VCAM-1 has been well documented, the expression and role of selectins is still a matter of controversy. In a mouse syngenic in vitro BBB model, highly relevant for examining immunological events, mouse brain capillary endothelial cells (MBCECs) do not express selectins. Treatment of MBCECs with LPS, induced E- and P-selectin expression, whereas TNF-alpha or IFN-gamma treatments did not. Finally, P-selectin but not E-selectin expression was induced in IL-1beta treated MBCECs. Thus, our study suggests that diverse inflammatory stimuli could differentially regulate selectin expression at the BBB.


Fluids and Barriers of the CNS | 2012

Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability in vitro

Elodie Vandenhaute; Maxime Culot; Fabien Gosselet; Lucie Dehouck; Catherine Godfraind; Michel Franck; Jean Plouët; Roméo Cecchelli; Marie-Pierre Dehouck; Marie-Magdeleine Ruchoux

BackgroundThe function of pericytes remains questionable but with improved cultured technique and the use of genetically modified animals, it has become increasingly clear that pericytes are an integral part of blood–brain barrier (BBB) function, and the involvement of pericyte dysfunction in certain cerebrovascular diseases is now emerging. The porcine stress syndrome (PSS) is the only confirmed, homologous model of malignant hyperthermia (MH) in veterinary medicine. Affected animals can experience upon slaughter a range of symptoms, including skeletal muscle rigidity, metabolic acidosis, tachycardia and fever, similar to the human syndrome. Symptoms are due to an enhanced calcium release from intracellular stores. These conditions are associated with a point mutation in ryr1/hal gene, encoding the ryanodine receptor, a calcium channel. Important blood vessel wall muscle modifications have been described in PSS, but potential brain vessel changes have never been documented in this syndrome.MethodsIn the present work, histological and ultrastructural analyses of brain capillaries from wild type and ryr1 mutated pigs were conducted to investigate the potential impairment of pericytes, in this pathology. In addition, brain pericytes were isolated from the three porcine genotypes (wild-type NN pigs; Nn and nn pigs, bearing one or two (n) mutant ryr1/hal alleles, respectively), and tested in vitro for their influence on the permeability of BBB endothelial monolayers.ResultsEnlarged perivascular spaces were observed in ryr1-mutant samples, corresponding to a partial or total detachment of the astrocytic endfeet. These spaces were electron lucent and sometimes filled with lipid deposits and swollen astrocytic feet. At the ultrastructural level, brain pericytes did not seem to be affected because they showed regular morphology and characteristics, so we aimed to check their ability to maintain BBB properties in vitro. Our results indicated that pericytes from the three genotypes of pigs had differing influences on the BBB. Unlike pericytes from NN pigs, pericytes from Nn and nn pigs were not able to maintain low BBB permeability.ConclusionsElectron microscopy observations demonstrated brain capillary modifications in PSS condition, but no change in pericyte morphology. Results from in vitro experiments suggest that brain pericytes from ryr1 mutated pigs, even if they are not affected by this condition at the ultrastructural level, are not able to maintain BBB integrity in comparison with pericytes from wild-type animals.


Journal of Pharmacological and Toxicological Methods | 2013

Accelerated Caco-2 cell permeability model for drug discovery.

Emmanuel Sevin; Lucie Dehouck; A. Fabulas-da Costa; R. Cecchelli; Marie-Pierre Dehouck; Stefan Lundquist; Maxime Culot

INTRODUCTION By culturing Caco-2 cells according to a new and optimized protocol, it has been possible to accelerate the cell culture process in such a way that the cells can be used for experiments after only 6 days. The accelerated Caco-2 model has been compared to the traditional model (requiring 21-25 days of culture) in terms of tightness of the junctions, ability to rank chemical compounds for apparent permeability, active efflux and to discriminate P-gp substrates. METHODS AND RESULTS In the new protocol, Caco-2 cells were cultured with the classical Caco-2 medium supplemented with puromycin. The initial cell seeding density was increased two times compared to the traditional procedure and the presence of a low concentration of puromycin in the culture medium reduced the Caco-2 permeability of mannitol. Bi-directional studies were performed with known P-gp substrates (rhodamine 123, digoxin and saquinavir) and with a total of 20 marketed drugs covering a wide range of physicochemical characteristics and therapeutic indications. Strong correlations were obtained between the apparent permeability in absorptive (Papp A→B) or secretory (Papp B→A) of the drugs in the accelerated model and in the traditional models and comparable efflux ratios were observed in the two studied models. DISCUSSION The new protocol reduces costs for screening and leads to higher throughput compared to traditional Caco-2 cell models. This accelerated model provides short time-feedback to the drug design during the early stage of drug discovery.


Journal of Alzheimer's Disease | 2018

ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier

Yordenca Lamartinière; Marie-Christine Boucau; Lucie Dehouck; Markus Krohn; Jens Pahnke; Pietra Candela; Fabien Gosselet; Laurence Fenart

The role of ABCA7 in brain homeostasis and Alzheimers disease (AD) is currently under intense scrutiny, since it has been reported that polymorphisms in the Abca7 gene and a loss of function of the protein are closely linked to excessive accumulation of amyloid peptides and disturbed cholesterol homeostasis. The blood-brain barrier (BBB), which isolates the brain from the blood compartment, is involved in both of these processes. We therefore hypothesized that ABCA7 downregulation might affect cholesterol and amyloid exchanges at the BBB. Using siRNA and primary cultures of mouse endothelial cells purified from brain microvessels and seeded on Transwell ® inserts, we investigated the role of ABCA7 in cholesterol and amyloid exchanges across the BBB. Our results showed that a decrease in ABCA7 expression at the BBB provokes in vitro a reduction in ABCA1 expression and a decrease in APOE secretion. In vitro, these decreases reduce cholesterol exchange across the BBB, particularly for high-density lipoproteins and ApoA-I particles. When ABCA7 was absent, we observed a reduction in Aβ peptide basolateral-to-apical transport in the presence of ApoA-I, with non-significant changes in the expression levels of Rage, Lrp1, Abcb1, Abcc1, and Abcg2. Our study in murine BBB model highlighted a putative new role for ABCA7 in AD via the proteins involvement in cholesterol metabolism and amyloid clearance at the BBB.


Frontiers in Cellular Neuroscience | 2018

Blood-Brain Barrier Cellular Responses Toward Organophosphates: Natural Compensatory Processes and Exogenous Interventions to Rescue Barrier Properties

Orly Ravid; Shirin Elhaik Goldman; David Macheto; Yael Bresler; Raquel Ines De Oliveira; Sigal Liraz-Zaltsman; Fabien Gosselet; Lucie Dehouck; Michal Schnaider Beeri; Itzik Cooper

Organophosphorus compounds (OPs) are highly toxic chemicals widely used as pesticides (e.g., paraoxon (PX)- the active metabolite of the insecticide parathion) and as chemical warfare nerve agents. Blood-brain barrier (BBB) leakage has been shown in rodents exposed to PX, which is an organophosphate oxon. In this study, we investigated the cellular mechanisms involved in BBB reaction after acute exposure to PX in an established in vitro BBB system made of stem-cell derived, human brain-like endothelial cells (BLECs) together with brain pericytes that closely mimic the in vivo BBB. Our results show that PX directly affects the BBB in vitro both at toxic and non-toxic concentrations by attenuating tight junctional (TJ) protein expression and that only above a certain threshold the paracellular barrier integrity is compromised. Below this threshold, BLECs exhibit a morphological coping mechanism in which they enlarge their cell area thus preventing the formation of meaningful intercellular gaps and maintaining barrier integrity. Importantly, we demonstrate that reversal of the apoptotic cell death induced by PX, by a pan-caspase-inhibitor ZVAD-FMK (ZVAD) can reduce PX-induced cell death and elevate cell area but do not prevent the induced BBB permeability, implying that TJ complex functionality is hindered. This is corroborated by formation of ROS at all toxic concentrations of PX and which are even higher with ZVAD. We suggest that while lower levels of ROS can induce compensating mechanisms, higher PX-induced oxidative stress levels interfere with barrier integrity.


Current Neurovascular Research | 2011

Modelling the Neurovascular Unit and the Blood-Brain Barrier with the Unique Function of Pericytes

Elodie Vandenhaute; Lucie Dehouck; Marie-Christine Boucau; Emmanuel Sevin; Rustem Uzbekov; Meryem Tardivel; Fabien Gosselet; Laurence Fenart; Roméo Cecchelli; Marie-Pierre Dehouck

Collaboration


Dive into the Lucie Dehouck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge