Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucie Janeckova is active.

Publication


Featured researches published by Lucie Janeckova.


Brain | 2009

Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies

Robert Adalbert; Antal Nógrádi; Elisabetta Babetto; Lucie Janeckova; Simon A. Walker; Martin Kerschensteiner; Thomas Misgeld; Michael P. Coleman

Synapse loss precedes cell death in Alzheimers disease, but the timing of axon degeneration relative to these events, and the causal relationships remain unclear. Axons become so severely dystrophic near amyloid plaques that their interruption, causing permanent loss of function, extensive synapse loss, and potentially cell death appears imminent. However, it remains unclear whether axons are truly interrupted at plaques and whether cell bodies fail to support their axons and dendrites. We traced TgCRND8 mouse axons longitudinally through, distal to, and proximal from dystrophic regions. The corresponding neurons not only survived but remained morphologically unaltered, indicating absence of axonal damage signalling or a failure to respond to it. Axons, no matter how dystrophic, remained continuous and initially morphologically normal outside the plaque region, reflecting support by metabolically active cell bodies and continued axonal transport. Immunochemical and ultrastructural studies showed dystrophic axons were tightly associated with disruption of presynaptic transmission machinery, suggesting local functional impairment. Thus, we rule out long-range degeneration axons or dendrites as major contributors to early synapse loss in this model, raising the prospect of a therapeutic window for functional rescue of individual neurons lasting months or even years after their axons become highly dystrophic. We propose that multi-focal pathology has an important role in the human disease in bringing about the switch from local, and potentially recoverable, synapse loss into permanent loss of neuronal processes and eventually their cell bodies.


Journal of Cell Biology | 2009

WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice

Laura Conforti; Anna L. Wilbrey; Giacomo Morreale; Lucie Janeckova; Bogdan Beirowski; Robert Adalbert; Francesca Mazzola; Michele Di Stefano; Robert Hartley; Elisabetta Babetto; Trevor Stanley Smith; Jonathan Gilley; Richard A. Billington; Armando A. Genazzani; Richard R. Ribchester; Giulio Magni; Michael P. Coleman

The slow Wallerian degeneration (WldS) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70–amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide–synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of WldS-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the WldS VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead WldS is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. WldS requires both of its components to protect axons from degeneration.


The Journal of Neuroscience | 2009

Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo.

Bogdan Beirowski; Elisabetta Babetto; Jon Gilley; Francesca Mazzola; Laura Conforti; Lucie Janeckova; Giulio Magni; Richard R. Ribchester; Michael P. Coleman

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (WldS) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that WldS acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear WldS significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native WldS mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear WldS for the first time in vivo, and higher axoplasmic levels in transgenic mice with WldS redistribution. Cytoplasmic WldS fractionated predominantly with mitochondria and microsomes. We conclude that WldS can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.


The Journal of Neuroscience | 2010

Targeting NMNAT1 to Axons and Synapses Transforms Its Neuroprotective Potency In Vivo

Elisabetta Babetto; Bogdan Beirowski; Lucie Janeckova; Rosalind Brown; Jonathan Gilley; Derek Thomson; Richard R. Ribchester; Michael P. Coleman

Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (WldS) protects axons dose dependently, but its mechanism is still elusive. We recently showed that WldS acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which WldS protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to WldS also needs to be established in vivo. Because the N-terminal portion of WldS (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than WldS, able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear WldS, and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.


Cell Death & Differentiation | 2015

A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration.

M. Di Stefano; I Nascimento-Ferreira; Giuseppe Orsomando; Mori; Jonathan Gilley; Rosalind Brown; Lucie Janeckova; M E Vargas; L A Worrell; Andrea Loreto; J Tickle; Jane Patrick; J R M Webster; Martina Marangoni; F M Carpi; S Pucciarelli; F Rossi; W Meng; A Sagasti; Richard R. Ribchester; Giulio Magni; Michael P. Coleman; Laura Conforti

NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons, providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866 and the axon protective protein WldS prevent this rise. These data indicate that the mechanism by which NMNAT and the related WldS protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies.


FEBS Journal | 2011

Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration

Laura Conforti; Lucie Janeckova; Diana Wagner; Francesca Mazzola; Lucia Cialabrini; Michele Di Stefano; Giuseppe Orsomando; Giulio Magni; Caterina Bendotti; Neil Smyth; Michael P. Coleman

NAD+ synthesizing enzyme NMNAT1 constitutes most of the sequence of neuroprotective protein WldS, which delays axon degeneration by 10‐fold. NMNAT1 activity is necessary but not sufficient for WldS neuroprotection in mice and 70 amino acids at the N‐terminus of WldS, derived from polyubiquitination factor Ube4b, enhance axon protection by NMNAT1. NMNAT1 activity can confer neuroprotection when redistributed outside the nucleus or when highly overexpressed in vitro and partially in Drosophila. However, the role of endogenous NMNAT1 in normal axon maintenance and in Wallerian degeneration has not been elucidated yet. To address this question we disrupted the Nmnat1 locus by gene targeting. Homozygous Nmnat1 knockout mice do not survive to birth, indicating that extranuclear NMNAT isoforms cannot compensate for its loss. Heterozygous Nmnat1 knockout mice develop normally and do not show spontaneous neurodegeneration or axon pathology. Wallerian degeneration after sciatic nerve lesion is neither accelerated nor delayed in these mice, consistent with the proposal that other endogenous NMNAT isoforms play a principal role in Wallerian degeneration.


PLOS ONE | 2012

Simultaneous single-sample determination of NMNAT isozyme activities in mouse tissues.

Giuseppe Orsomando; Lucia Cialabrini; Adolfo Amici; Francesca Mazzola; Silverio Ruggieri; Laura Conforti; Lucie Janeckova; Michael P. Coleman; Giulio Magni

A novel assay procedure has been developed to allow simultaneous activity discrimination in crude tissue extracts of the three known mammalian nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1) isozymes. These enzymes catalyse the same key reaction for NAD biosynthesis in different cellular compartments. The present method has been optimized for NMNAT isozymes derived from Mus musculus, a species often used as a model for NAD-biosynthesis-related physiology and disorders, such as peripheral neuropathies. Suitable assay conditions were initially assessed by exploiting the metal-ion dependence of each isozyme recombinantly expressed in bacteria, and further tested after mixing them in vitro. The variable contributions of the three individual isozymes to total NAD synthesis in the complex mixture was calculated by measuring reaction rates under three selected assay conditions, generating three linear simultaneous equations that can be solved by a substitution matrix calculation. Final assay validation was achieved in a tissue extract by comparing the activity and expression levels of individual isozymes, considering their distinctive catalytic efficiencies. Furthermore, considering the key role played by NMNAT activity in preserving axon integrity and physiological function, this assay procedure was applied to both liver and brain extracts from wild-type and Wallerian degeneration slow (WldS) mouse. WldS is a spontaneous mutation causing overexpression of NMNAT1 as a fusion protein, which protects injured axons through a gain-of-function. The results validate our method as a reliable determination of the contributions of the three isozymes to cellular NAD synthesis in different organelles and tissues, and in mutant animals such as WldS.


Neurobiology of Aging | 2014

Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington's disease ☆

Martina Marangoni; Robert Adalbert; Lucie Janeckova; Jane Patrick; Jaskaren Kohli; Michael P. Coleman; Laura Conforti

Axon degeneration precedes cell body death in many age-related neurodegenerative disorders, often determining symptom onset and progression. A sensitive method for revealing axon pathology could indicate whether this is the case also in Huntingtons disease (HD), a fatal, devastating neurodegenerative disorder causing progressive deterioration of both physical and mental abilities, and which brain region is affected first. We studied the spatio-temporal relationship between axon pathology, neuronal loss, and mutant Huntingtin aggregate formation in HD mouse models by crossing R6/2 transgenic and HdhQ140 knock-in mice with YFP-H mice expressing the yellow fluorescent protein in a subset of neurons. We found large axonal swellings developing age-dependently first in stria terminalis and then in corticostriatal axons of HdhQ140 mice, whereas alterations of other neuronal compartments could not be detected. Although mutant Huntingtin accumulated with age in several brain areas, inclusions in the soma did not correlate with swelling of the corresponding axons. Axon abnormalities were not a prominent feature of the rapid progressive pathology of R6/2 mice. Our findings in mice genetically similar to HD patients suggest that axon pathology is an early event in HD and indicate the importance of further studies of stria terminalis axons in man.


Neuroscience | 2010

WldS can delay Wallerian degeneration in mice when interaction with valosin-containing protein is weakened.

Bogdan Beirowski; Giacomo Morreale; Laura Conforti; Francesca Mazzola; M. Di Stefano; Anna L. Wilbrey; Elisabetta Babetto; Lucie Janeckova; Giulio Magni; Michael P. Coleman

Axon degeneration is an early event in many neurodegenerative disorders. In some, the mechanism is related to injury-induced Wallerian degeneration, a proactive death program that can be strongly delayed by the neuroprotective slow Wallerian degeneration protein (Wld(S)) protein. Thus, it is important to understand the Wallerian degeneration mechanism and how Wld(S) blocks it. Wld(S) location is influenced by binding to valosin-containing protein (VCP), an essential protein for many cellular processes including membrane fusion and endoplasmic reticulum-associated degradation. In mice, the N-terminal 16 amino acids (N16), which mediate VCP binding, are essential for Wld(S) to protect axons, a role which another VCP binding sequence can substitute. In Drosophila, the Wld(S) phenotype is weakened by a similar N-terminal truncation and by knocking down the VCP homologue ter94. Neither null nor floxed VCP mice are viable so it is difficult to confirm the requirement for VCP binding in mammals in vivo. However, the hypothesis can be tested further by introducing a Wld(S) missense mutation, altering its affinity for VCP but minimizing the risk of disturbing other aspects of its structure or function. We introduced the R10A mutation, which weakens VCP binding in vitro, and expressed it in transgenic mice. R10AWld(S) fails to co-immunoprecipitate VCP from mouse brain, and only occasionally and faintly accumulates in nuclear foci for which VCP binding is necessary but not sufficient. Surprisingly however, axon protection remains robust and indistinguishable from that in spontaneous Wld(S) mice. We suggest that either N16 has an additional, VCP-independent function in mammals, or that the phenotype requires only weak VCP binding which may be driven forwards in vivo by the high VCP concentration.


Experimental Gerontology | 2013

Axonal swelling preceding neuronal degeneration characterise pathology in mouse models of Huntington's disease

Martina Marangoni; Robert Adalbert; Lucie Janeckova; Jane Patrick; Jaskaren Kohli; Michael P. Coleman; Laura Conforti

Collaboration


Dive into the Lucie Janeckova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Conforti

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Giulio Magni

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Mazzola

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge