Lucien Bovet
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucien Bovet.
Plant Physiology | 2006
Do-Young Kim; Lucien Bovet; Sergei Kushnir; Eun Woon Noh; Enrico Martinoia; Youngsook Lee
AtATM3, an ATP-binding cassette transporter of Arabidopsis (Arabidopsis thaliana), is a mitochondrial protein involved in the biogenesis of iron-sulfur clusters and iron homeostasis in plants. Our gene expression analysis showed that AtATM3 is up-regulated in roots of plants treated with cadmium [Cd(II)] or lead (II); hence, we investigated whether this gene is involved in heavy metal tolerance. We found that AtATM3-overexpressing plants were enhanced in resistance to Cd, whereas atatm3 mutant plants were more sensitive to Cd than their wild-type controls. Moreover, atatm3 mutant plants expressing 35S promoter-driven AtATM3 were more resistant to Cd than wild-type plants. Since previous reports often showed that the cytosolic glutathione level is positively correlated with heavy metal resistance, we measured nonprotein thiols (NPSH) in these mutant plants. Surprisingly, we found that atatm3 contained more NPSH than the wild type under normal conditions. AtATM3-overexpressing plants did not differ under normal conditions, but contained less NPSH than wild-type plants when exposed to Cd(II). These results suggest a role for AtATM3 in regulating cellular NPSH level, a hypothesis that was further supported by our gene expression study. Genetic or pharmacological inhibition of glutathione biosynthesis led to the elevated expression of AtATM3, whereas expression of the glutathione synthase gene GSH1 was increased under Cd(II) stress and in the atatm3 mutant. Because the closest homolog of AtATM3 in fission yeast (Schizosaccharomyces pombe), HMT1, is a vacuolar membrane-localized phytochelatin-Cd transporter, it is tempting to speculate that glutathione-Cd(II) complexes formed in the mitochondria are exported by AtATM3. In conclusion, our data show that AtATM3 contributes to Cd resistance and suggest that it may mediate transport of glutamine synthetase-conjugated Cd(II) across the mitochondrial membrane.
FEBS Letters | 2005
Diana Santelia; Vincent Vincenzetti; Elisa Azzarello; Lucien Bovet; Yoichiro Fukao; Stefano Mancuso; Enrico Martinoia; Markus Geisler
Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss‐of‐function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.
Plant Molecular Biology | 2004
Sabine Glombitza; Pierre-Henri Dubuis; Oliver Thulke; Gerhard Welzl; Lucien Bovet; Michael Götz; Matthias Affenzeller; Birgit Geist; Alain Hehn; Carole Asnaghi; Dieter Ernst; Harald K. Seidlitz; Heidrun Gundlach; Klaus F. X. Mayer; Enrico Martinoia; Danièle Werck-Reichhart; Felix Mauch; Anton R. Schäffner
Plant secondary metabolism significantly contributes to defensive measures against adverse abiotic and biotic cues. To investigate stress-induced, transcriptional alterations of underlying effector gene families, which encode enzymes acting consecutively in secondary metabolism and defense reactions, a DNA array (MetArray) harboring gene-specific probes was established. It comprised complete sets of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes along with 62 cytochrome P450 monooxygenases and 26 ABC transporters. Their transcriptome was monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component analysis based on the transcription of these effector gene families defined distinct responses and crosstalk. Methyl jasmonate and ethylene treatments were separated from a group combining reactions towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae pv. tomato. The responses to the herbicide bromoxynil and UV-B radiation were distinct from both groups. In addition, these analyses pinpointed individual effector genes indicating their role in these stress responses. A small group of genes was diagnostic in differentiating the response to two herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress hormones. Small groups of comprehensively induced effector genes indicate common defense strategies. Furthermore, homologous members within branches of these effector gene families displayed differential expression patterns either in both organs or during stress responses arguing for their non-redundant functions.
Current Biology | 2012
Santiago Alejandro; Yuree Lee; Takayuki Tohge; D. Sudre; Sonia Osorio; Jiyoung Park; Lucien Bovet; Niko Geldner; Alisdair R. Fernie; Enrico Martinoia
Lignin is the defining constituent of wood and the second most abundant natural polymer on earth. Lignin is produced by the oxidative coupling of three monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. Monolignols are synthesized via the phenylpropanoid pathway and eventually polymerized in the cell wall by peroxidases and laccases. However, the mechanism whereby monolignols are transported from the cytosol to the cell wall has remained elusive. Here we report the discovery that AtABCG29, an ATP-binding cassette transporter, acts as a p-coumaryl alcohol transporter. Expression of AtABCG29 promoter-driven reporter genes and a Citrine-AtABCG29 fusion construct revealed that AtABCG29 is targeted to the plasma membrane of the root endodermis and vascular tissue. Moreover, yeasts expressing AtABCG29 exhibited an increased tolerance to p-coumaryl alcohol by excreting this monolignol. Vesicles isolated from yeasts expressing AtABCG29 exhibited a p-coumaryl alcohol transport activity. Loss-of-function Arabidopsis mutants contained less lignin subunits and were more sensitive to p-coumaryl alcohol. Changes in secondary metabolite profiles in abcg29 underline the importance of regulating p-coumaryl alcohol levels in the cytosol. This is the first identification of a monolignol transporter, closing a crucial gap in our understanding of lignin biosynthesis, which could open new directions for lignin engineering.
Planta | 2002
Üner H. Kolukisaoglu; Lucien Bovet; Markus Klein; Thomas Eggmann; Markus Geisler; Dierk Wanke; Enrico Martinoia; Burkhard Schulz
Abstract. Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein (MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers.
Plant Physiology | 2008
Michał Jasiński; Damien Sudre; Gert Schansker; Maya Schellenberg; Signarbieux Constant; Enrico Martinoia; Lucien Bovet
The analysis of gene expression in Arabidopsis (Arabidopsis thaliana) using cDNA microarrays and reverse transcription-polymerase chain reaction showed that AtOSA1 (A. thaliana oxidative stress-related Abc1-like protein) transcript levels are influenced by Cd2+ treatment. The comparison of protein sequences revealed that AtOSA1 belongs to the family of Abc1 proteins. Up to now, Abc1-like proteins have been identified in prokaryotes and in the mitochondria of eukaryotes. AtOSA1 is the first member of this family to be localized in the chloroplasts. However, despite sharing homology to the mitochondrial ABC1 of Saccharomyces cerevisiae, AtOSA1 was not able to complement yeast strains deleted in the endogenous ABC1 gene, thereby suggesting different function between AtOSA1 and the yeast ABC1. The atosa1-1 and atosa1-2 T-DNA insertion mutants were more affected than wild-type plants by Cd2+ and revealed an increased sensitivity toward oxidative stress (hydrogen peroxide) and high light. The mutants exhibited higher superoxide dismutase activities and differences in the expression of genes involved in the antioxidant pathway. In addition to the conserved Abc1 region in the AtOSA1 protein sequence, putative kinase domains were found. Protein kinase assays in gelo using myelin basic protein as a kinase substrate revealed that chloroplast envelope membrane fractions from the AtOSA1 mutant lacked a 70-kD phosphorylated protein compared to the wild type. Our data suggest that the chloroplast AtOSA1 protein is a new factor playing a role in the balance of oxidative stress.
BMC Plant Biology | 2010
Nadine Grisel; Stefan Zoller; Marzanna Künzli-Gontarczyk; Thomas Lampart; Martin Münsterkötter; Ivano Brunner; Lucien Bovet; Jean-Pierre Métraux; Christoph Sperisen
BackgroundIonic aluminum (mainly Al3+) is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula) releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth.ResultsTreatment of the aspen roots with 500 μM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3) and MATE (for multidrug and toxin efflux protein, mediating citrate efflux). Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE.ConclusionExposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The aspen genes ALS3 and MATE may be important components of these mechanisms.
Planta | 1995
Lucien Bovet; M. O. Müller; P. A. Siegenthaler
Two chloroplast envelope proteins from spinach (Spinacia oleracea L.) exhibiting relative molecular masses (Mrs) of 26 and 14 kDa are apparently phosphorylated by a unique Ca2+-dependent serine protein kinase. The activity of this enzyme shows the same sensitivity towards pH, Ca2+, Mg2+, H7 [1-(5-isoquinolinesulphonyl)-2-methylpiperazine] and ATP concentrations (Siegenthaler and Bovet 1993, Planta 190, 231–240). Autoradiographic analyses following two-dimensional-gel electrophoresis (isoelectric focusing and SDS-PAGE) associated with Western blotting experiments indicate that these two phosphoproteins appeared to be pools of the light-harvesting complex of photosystem II (LHCII) and of the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit, respectively. Immunoprecipitation of envelope-phosphorylated proteins, using immunoglobulins (IgG) directed to the apoprotein of LHCII and to the holoenzyme of Rubisco confirmed that LHCII and the Rubisco small subunit effectively incorporated 32P from (γ-32P)ATP in isolated envelope membranes. We propose that, in agreement with the fact that protein import is driven by ATP, the phosphorylation of LHCII and the Rubisco small subunit could take place after the processing of precursor proteins and could be an obligatory step for their internalization into chloroplasts.
FEBS Letters | 1997
Paul-André Siegenthaler; Marc-Olivier Müller; Lucien Bovet
Three spinach chloroplast envelope membrane preparations (i.e. whole, outer and inner membranes) were incubated in the presence of [γ‐32P]ATP. After lipid extraction and separation by TLC, four main phosphorylated lipids were detected by autoradiography in whole envelope preparations. These phospholipids were identified by comparing their Rf with that of lipid markers and by a deacylation procedure. They were found to be phosphatidic acid (PA) and lyso‐PA, l‐α‐phosphatidyl‐inositol 4‐monophosphate (PIP) and lyso‐PIP. These lipids were not equally distributed in the outer and inner envelope membranes. Chloroplast envelope membranes were verified not to be contaminated by plasma membranes. It is concluded that lipid kinase activities are associated with spinach chloroplast envelope membranes.
Plant Science | 1997
Lucien Bovet; Bénédicte L'Eplattenier; Paul-André Siegenthaler
Abstract In this investigation, we found that the main source of ATP necessary for envelope protein phosphorylation is generated by photophosphorylation. Indeed, seven envelope polypeptides exhibiting Mr of about 60, 51, 35, 33, 26, 14 and 13 kD were found to be fully labelled in organello in the presence of [32P]Pi and light. The majority of these phosphopolypeptides were also detected when envelopes were phosphorylated in vitro in the presence of [γ-32P]ATP. This supports the idea that the chloroplast stroma significantly supplies envelope protein-kinases with ATP in the light. Preincubation of intact chloroplasts in darkness or with the phosphate translocator inhibitor 4,4′-diisothiocianato-stilbene-2,2′-disulfonate (DIDS) strongly prevented chloroplast protein phosphorylation in the presence of [32P]Pi, thereby attesting the involvement of chloroplast ATP in the envelope protein phosphorylation process. In the dark, two chloroplast soluble polypeptides of about 94 and 67 kD were also labelled, when intact chloroplasts were fed with [32P]Pi, thus indicating that these two polypeptides are able to use dark-phosphorylation pathways, independent of the photophosphorylation process, to become phosphorylated. Our results show also that the 67 kD dark-phosphorylated protein is very likely to be a phosphoglucomutase, since its labelling was markedly reduced by the addition of exogenous glucose 1- or 6-phosphate.