Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucien J. Houenou is active.

Publication


Featured researches published by Lucien J. Houenou.


Brain Research Reviews | 1997

The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system.

Victoria L. Turgeon; Lucien J. Houenou

There is increasing evidence suggesting that members of the serine protease family, including thrombin, chymotrypsin, urokinase plasminogen activator, and kallikrein, may play a role in normal development and/or pathology of the nervous system. Serine proteases and their cognate inhibitors have been shown to be increased in the neural parenchyma and cerebrospinal fluid following injury to the blood brain barrier. Zymogen precursors of thrombin and thrombin-like proteases as well as their receptors have also been localized in several distinct regions of the developing or adult brain. Thrombin-like proteases have been shown to exert deleterious effects, including neurite retraction and death, on different neuronal and non-neuronal cell populations in vitro. These effects appear to be mediated through cell surface receptors and can be prevented or reversed with specific serine protease inhibitors (serpins). Furthermore, we have recently shown that treatment with protease nexin-1 (a serpin that inhibits thrombin-like proteases) promotes the survival and growth of spinal motoneurons during the period of programmed cell death and following injury. Taken together, these observations suggest that thrombin-like proteases play a deleterious role, whereas serpins promote the development and maintenance of neuronal cells. Thus, changes in the balance between serine proteases and their cognate inhibitors may lead to pathological states similar to those associated with some neurodegenerative diseases such as Alzheimers disease. The present review summarizes the current state of research involving such serine proteases and speculates on the possible role of these thrombin-like proteases in the development, plasticity and pathology of the nervous system.


The Journal of Comparative Neurology | 1999

Pigment epithelium-derived factor promotes the survival and differentiation of developing spinal motor neurons.

Lucien J. Houenou; Anselm P. D'Costa; Linxi Li; Victoria L. Turgeon; Cyril Enyadike; Elena Alberdi; S. Patricia Becerra

Pigment epithelium‐derived factor (PEDF) is a member of the serine protease inhibitor (serpin) superfamily that has been shown previously to promote the survival and/or differentiation of rat cerebellar granule neurons and human retinoblastoma cells in vitro. However, in contrast to most serpins, PEDF has no inhibitory activity against any known proteases, and its described biological activities do not appear to require the serpin‐reactive loop located toward the carboxy end of the polypeptide. Because another serpin, protease nexin‐1, has been shown to promote the in vivo survival and growth of motor neurons, the authors investigated the potential neurotrophic effects of PEDF on spinal cord motor neurons in highly enriched cultures and in vivo after injury. Here, it is shown that native bovine and recombinant human PEDF promoted the survival and differentiation (neurite outgrowth) of embryonic chick spinal cord motor neurons in vitro in a dose‐dependent manner. A truncated form of PEDF that lacks ≈62% of the carboxy end of the polypeptide comprising the homologous serpin‐reactive loop also exhibited neurotrophic activities similar to those of the full‐length protein. Furthermore, the data here showed that PEDF was transported retrogradely and prevented the death and atrophy of spinal motor neurons in the developing neonatal mouse after axotomy. These results indicate that PEDF exerts trophic effects on motor neurons, and, together with previous reports, these findings suggest that this protein may be useful as a pharmacologic agent to promote the development and maintenance of motor neurons. J. Comp. Neurol. 412:506–514, 1999. Published 1999 Wiley‐Liss, Inc.


Journal of the Neurological Sciences | 1995

Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease

Daniel Hantaï; M. Akaaboune; C. Lagord; Monique Murawsky; Lucien J. Houenou; Barry W. Festoff; J.L. Vaught; François Rieger; Brigitte Blondet

Recombinant human insulin-like growth factor-I (IGF-I) is being considered as a possible therapeutic agent for the treatment of motoneuron diseases like amyotrophic lateral sclerosis. The neurological mutant mouse wobbler, carries an autosomal recessive gene (wr) and has been characterized as a model of lower motoneuron disorders with associated muscle atrophy, denervation and reinnervation. The purpose of the present study was to determine the possible beneficial effect of IGF-I administration in this mouse model. Upon diagnosis at 4 weeks of age, affected mice and their control normal littermates received human recombinant IGF-I (1 mg/kg) or vehicle solution, once a day, for 6 weeks. Body weight and grip strength were evaluated periodically during the treatment period. Mean muscle fiber diameter on biceps brachii sections, choline acetyltransferase activity in muscle extracts, and motoneuron numbers in spinal cord sections were determined. IGF-I treated wobbler mice showed a marked weight increase from 3 to 6 weeks of treatment in comparison with placebo treated mutant mice. At the end of the treatment, grip strength, estimated by dynamometer resistance, was 40% higher in IGF-I treated versus placebo treated animals. Mean muscle fiber diameter which is smaller in wobbler mice than in normal mice was increased in IGF-I treated mutants. However, in this study the muscle choline acetyltransferase activity and the number of spinal cord motoneurons were unchanged. Thus, IGF-I administration mainly results in a significant effect on the behavioral and skeletal muscle histochemical parameters of the wobbler mouse mutant.


Cell and Tissue Research | 1996

Regulation of spinal motoneuron survival by GDNF during development and following injury.

Lucien J. Houenou; Ronald W. Oppenheim; Linxi Li; Albert C. Lo; David Prevette

Abstract.During normal development of many vertebrate species, substantial numbers of neurons in the central and peripheral nervous system undergo naturally occurring (or programmed) cell death. For example, approximately 50% of spinal motoneurons degenerate and die at a time when these cells are establishing synaptic connections with their target muscles in the chick, mouse, rat, and human. It is generally thought that the survival of developing motoneurons depends on access to trophic molecules. Motoneurons that survive the period of programmed cell death may also die following injury in the developing or adult animal. Increasing evidence suggests that glial-cell-line-derived neurotrophic factor (GDNF) plays a physiological and/or pharmacological role in the survival of various neuronal cell types, including motoneurons. In this paper, we review the survival and growth-promoting effects of GDNF on spinal motoneurons during the period of programmed cell death and following injury.


Progress in Brain Research | 1994

Naturally occurring and axotomy-induced motoneuron death and its prevention by neurotrophic agents: a comparison between chick and mouse

Lucien J. Houenou; Linxi Li; Albert C. Lo; Qiao Yan; Ronald W. Oppenheim

Neuronal cell death is an important regressive event during the normal development of the peripheral and central nervous systems of many vertebrate and invertebrate species. Furthermore, when neurons are deprived of their target following axonal injury (axotomy) during embryonic, fetal, or early postnatal development, they undergo massive cell death. Both naturally occurring and axotomy-induced neuronal cell death can be prevented by treatment with growth factors or neurotrophic agents. Naturally occurring cell death of spinal MNs has been extensively studied in both avians and mammals. However, compared with mammals, there is little information on the effects of axotomy in avian species and it is not known whether trophic agents can modify axotomy-induced death in avian MNs. It is also not known whether trophic/growth factors can promote the in vivo survival of mammalian MNs during the period of naturally occurring cell death. We have examined (1) the time course of axotomy-induced death of lumbar spinal MNs in chick and mouse, and (2) the survival-promoting activity of a number of previously characterized growth and trophic factors on both programmed and axotomy-induced MN death in these two species. We show that axotomy performed on, or prior to, E12 in the chick results in a rapid decrease (i.e. 50%) in MN numbers within 3-4 days postsurgery, whereas these cells were able to survive for up to 1 week following axotomy on E14. By contrast, mouse MNs remained vulnerable to axotomy for at least 5 days after birth.(ABSTRACT TRUNCATED AT 250 WORDS)


Cell Stress & Chaperones | 2004

Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration

J. Lille Tidwell; Lucien J. Houenou; Michael Tytell

Abstract The induction of heat shock proteins (Hsps) serves not only as a marker for cellular stress but also as a promoter of cell survival, which is especially important in the nervous system. We examined the regulation of the constitutive and stress-induced 70-kD Hsps (Hsc70 and Hsp70, respectively) after sciatic nerve (SN) axotomy in the neonatal mouse. Additionally, the prevention of axotomy-induced SN cell death by administration of several preparations of exogenous Hsc70 and Hsp70 was tested. Immunohistochemistry and Western blot analyses showed that endogenous levels of Hsc70 and Hsp70 did not increase significantly in lumbar motor neurons or dorsal root ganglion sensory neurons up to 24 hours after axotomy. When a variety of Hsc70 and Hsp70 preparations at doses ranging from 5 to 75 μg were applied to the SN stump after axotomy, the survival of both motor and sensory neurons was significantly improved. Thus, it appears that motor and sensory neurons in the neonatal mouse do not initiate a typical Hsp70 response after traumatic injury and that administration of exogenous Hsc/Hsp70 can remedy that deficit and reduce the subsequent loss of neurons by apoptosis.


Journal of Neuropathology and Experimental Neurology | 1999

Activation of the Protease-Activated Thrombin Receptor (PAR)-1 Induces Motoneuron Degeneration in the Developing Avian Embryo

Victoria L. Turgeon; Carolanne E. Milligan; Lucien J. Houenou

Several studies have shown that both neuronal and glial cells express functional thrombin receptors as well as prothrombin transcripts. Recently, we (and others) have shown that alpha-thrombin induces apoptotic cell death in different neuronal cell types, including motoneurons, in culture. Thrombin-induced effects on different cells are mediated through the cell surface protease-activated thrombin receptor, PAR-1. Furthermore, it has been shown that, in contrast to thrombin, which induces proteolysis of other proteins besides its receptor, the thrombin receptor agonist peptide, serine-phenylalanine-leucine-leucine-arginine-asparagine-proline (SFLLRNP), is only known to activate this receptor. However, whether activation of the thrombin receptor in vivo affects the development of spinal cord motoneurons is not known. Here, we show that treatment with a synthetic SFLLRNP peptide induced a dose-dependent degeneration and death of spinal motoneurons both in highly enriched cultures and in the developing chick embryo in vivo. However, cotreatment with caspase inhibitors completely abolished SFLLRNP-induced motoneuron death both in vitro and in vivo. These results suggest that developing motoneurons express functionally active PAR-1 whose activation leads to cell death through stimulation of the caspase family of proteins. Our findings also suggest a novel and deleterious role for PAR-like receptors in the central nervous system, different from their previously known functions in the vascular and circulatory system.


Journal of Neurobiology | 1998

Mechanisms of insulin-like growth factor regulation of programmed cell death of developing avian motoneurons

Anselm P. D'Costa; David Prevette; Lucien J. Houenou; Siwei Wang; Kerstin Zackenfels; Hermann Rohrer; Jurgen Zapf; Pico Caroni; Ronald W. Oppenheim

During development of the avian neuromuscular system, lumbar spinal motoneurons (MNs) innervate their muscle targets in the hindlimb coincident with the onset and progression of MN programmed cell death (PCD). Paralysis (activity blockade) of embryos during this period rescues large numbers of MNs from PCD. Because activity blockade also results in enhanced axonal branching and increased numbers of neuromuscular synapses, it has been postulated that following activity blockade, increased numbers of MNs can gain access to muscle-derived trophic agents that prevent PCD. An assumption of the access hypothesis of MN PCD is the presence of an activity-dependent, muscle-derived sprouting or branching agent. Several previous studies of sprouting in the rodent neuromuscular system indicate that insulin-like growth factors (IGFs) are candidates for such a sprouting factor. Accordingly, in the present study we have begun to test whether the IGFs may play a similar role in the developing avian neuromuscular system. Evidence in support of this idea includes the following: (a) IGFs promote MN survival in vivo but not in vitro; (b) neutralizing antibodies against IGFs reduce MN survival in vivo; (c) both in vitro and in vivo, IGFs increase neurite growth, branching, and synapse formation; (d) activity blockade increases the expression of IGF-1 and IGF-2 mRNA in skeletal muscles in vivo; (e) in vivo treatment of paralyzed embryos with IGF binding proteins (IGF-BPs) that interfere with the actions of endogenous IGFs reduce MN survival, axon branching, and synapse formation; (f) treatment of control embryos in vivo with IGF-BPs also reduces synapse formation; and (g) treatment with IGF-1 prior to the major period of cell death (i.e., on embryonic day 6) increases subsequent synapse formation and MN survival and potentiates the survival-promoting actions of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) administered during the subsequent 4- to 5-day period of PCD. Collectively, these data provide new evidence consistent with the role of the IGFs as activity-dependent, muscle-derived agents that play a role in regulating MN survival in the avian embryo.


Cell Stress & Chaperones | 1996

Exogenous heat shock cognate protein Hsc 70 prevents axotomy-induced death of spinal sensory neurons.

Lucien J. Houenou; Linxi Li; Ming Lei; Carol R. Kent; Michael Tytell

Elevation of intracellular heat shock protein (Hsp)70 increases resistance of cells to many physical and metabolic insults. We tested the hypothesis that treatment with Hsc70 can also produce that effect, using the model of axotomy-induced neuronal death in the neonatal mouse. The sciatic nerve was sectioned and in some animals purified bovine brain Hsc70 was applied to the proximal end of the nerve immediately thereafter and again 3 days later. Seven days postaxotomy, the surviving sensory neurons of the lumbar dorsal root ganglion (DRG) and motoneurons of the lumbar ventral spinal cord were counted to assess cell death. Axotomy induced the death of approximately 33% of DRG neurons and 50% of motoneurons, when examined 7 days postinjury. Application of exogenous Hsc70 prevented axotomy-induced death of virtually all sensory neurons, but did not significantly alter motoneuron death. Thus, Hsc70 may prove to be useful in the repair of peripheral sensory nerve damage.


The Journal of Comparative Neurology | 1997

Neuromuscular Development in the Avian Paralytic Mutant Crooked Neck Dwarf (cn/cn): Further Evidence for the Role of Neuromuscular Activity in Motoneuron Survival

Ronald W. Oppenheim; David Prevette; Lucien J. Houenou; Martine Pinçon-Raymond; Violetta Dimitriadou; Anne Donevan; Michael J. O'Donovan; Peter Wenner; David D. McKemy; Paul D. Allen

Neuromuscular transmission and muscle activity during early stages of embryonic development are known to influence the differentiation and survival of motoneurons and to affect interactions with their muscle targets. We have examined neuromuscular development in an avian genetic mutant, crooked neck dwarf (cn/cn), in which a major phenotype is the chronic absence of the spontaneous, neurally mediated movements (motility) that are characteristic of avian and other vertebrate embryos and fetuses. The primary genetic defect in cn/cn embryos responsible for the absence of motility appears to be the lack of excitation‐contraction coupling. Although motility in mutant embryos is absent from the onset of activity on embryonic days (E) 3‐4, muscle differentiation appears histologically normal up to about E8. After E8, however, previously separate muscles fuse or coalesce secondarily, and myotubes exhibit a progressive series of histological and ultrastructural degenerative changes, including disarrayed myofibrils, dilated sarcoplasmic vesicles, nuclear membrane blebbing, mitochondrial swelling, nuclear inclusions, and absence of junctional end feet. Mutant muscle cells do not develop beyond the myotube stage, and by E18‐E20 most muscles have almost completely degenerated. Prior to their breakdown and degeneration, mutant muscles are innervated and synaptic contacts are established. In fact, quantitative analysis indicates that, prior to the onset of muscle degeneration, mutant muscles are hyperinnervated. There is increased branching of motoneuron axons and an increased number of synaptic contacts in the mutant muscle on E8. Naturally occurring cell death of limb‐innervating motoneurons is also significantly reduced in cn/cn embryos. Mutant embryos have 30%‐40% more motoneurons in the brachial and lumbar spinal cord by the end of the normal period of cell death. Electrophysiological recordings (electromyographic and direct records form muscle nerves) failed to detect any differences in the activity of control vs. mutant embryos despite the absence of muscular contractile activity in the mutant embryos. The α‐ryanodine receptor that is genetically abnormal in homozygote cn/cn embryos is not normally expressed in the spinal cord. Taken together, these data argue against the possibility that the mutant phenotype described here is caused by the perturbation of a central nervous system (CNS)‐expressed α‐ryanodine receptor. The hyperinnervation of skeletal muscle and the reduction of motoneuron death that are observed in cn/cn embryos also occur in genetically paralyzed mouse embryos and in pharmacologically paralyzed avian and rat embryos. Because a primary common feature in all three of these models is the absence of muscle activity, it seems likely that the peripheral excitation of muscle by motoneurons during normal development is a major factor in regulating retrograde muscle‐derived (or muscle‐associated) signals that control motoneuron differentiation and survival. J. Comp. Neurol. 381:353‐372, 1997.

Collaboration


Dive into the Lucien J. Houenou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linxi Li

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar

Siwei Wang

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert C. Lo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ming Lei

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar

David D. McKemy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge