Luciene Cristina Gastalho Campos
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Luciene Cristina Gastalho Campos is active.
Publication
Featured researches published by Luciene Cristina Gastalho Campos.
Human Molecular Genetics | 2012
Scott Smemo; Luciene Cristina Gastalho Campos; Ivan P. Moskowitz; José Eduardo Krieger; Alexandre C. Pereira; Marcelo A. Nobrega
Recent studies have identified the genetic underpinnings of a growing number of diseases through targeted exome sequencing. However, this strategy ignores the large component of the genome that does not code for proteins, but is nonetheless biologically functional. To address the possible involvement of regulatory variation in congenital heart diseases (CHDs), we searched for regulatory mutations impacting the activity of TBX5, a dosage-dependent transcription factor with well-defined roles in the heart and limb development that has been associated with the Holt-Oram syndrome (heart-hand syndrome), a condition that affects 1/100 000 newborns. Using a combination of genomics, bioinformatics and mouse genetic engineering, we scanned ∼700 kb of the TBX5 locus in search of cis-regulatory elements. We uncovered three enhancers that collectively recapitulate the endogenous expression pattern of TBX5 in the developing heart. We re-sequenced these enhancer elements in a cohort of non-syndromic patients with isolated atrial and/or ventricular septal defects, the predominant cardiac defects of the Holt-Oram syndrome, and identified a patient with a homozygous mutation in an enhancer ∼90 kb downstream of TBX5. Notably, we demonstrate that this single-base-pair mutation abrogates the ability of the enhancer to drive expression within the heart in vivo using both mouse and zebrafish transgenic models. Given the population-wide frequency of this variant, we estimate that 1/100 000 individuals would be homozygous for this variant, highlighting that a significant number of CHD associated with TBX5 dysfunction might arise from non-coding mutations in TBX5 heart enhancers, effectively decoupling the heart and hand phenotypes of the Holt-Oram syndrome.
Circulation-heart Failure | 2013
Leonardo dos Santos; Thiago A. Salles; Daniel F. Arruda-Junior; Luciene Cristina Gastalho Campos; Alexandre C. Pereira; Ana Luiza T. Barreto; Ednei L. Antonio; Alfredo José Mansur; Paulo José Ferreira Tucci; José Eduardo Krieger; Adriana Castello Costa Girardi
Background—The present study addresses the hypothesis that the activity of dipeptidyl peptidase IV (DPPIV), an enzyme that inactivates peptides that possess cardioprotective actions, correlates with adverse outcomes in heart failure (HF). The therapeutic potential of DPPIV inhibition in preventing cardiac dysfunction is also investigated. Methods and Results—Measurements of DPPIV activity in blood samples obtained from 190 patients with HF and 42 controls demonstrated that patients with HF exhibited an increase of ≈130% in circulating DPPIV activity compared with healthy subjects. Furthermore, an inverse correlation was observed between serum DPPIV activity and left ventricular (LV) ejection fraction in patients with HF. Similarly, radiofrequency LV ablation-induced HF rats displayed higher DPPIV activity in the plasma (≈50%) and heart tissue (≈3.5-fold) compared with sham-operated rats. Moreover, positive correlations were observed between the plasma DPPIV activity and LV end-diastolic pressure and lung congestion. Two days after surgery, 1 group of LV ablation-induced HF rats was treated with the DPPIV inhibitor sitagliptin (40 mg/kg BID) for 6 weeks, whereas the remaining rats were administered water. Hemodynamic measurements demonstrated that radiofrequency LV-ablated rats treated with sitagliptin exhibited a significant attenuation of HF-related cardiac dysfunction, including LV end-diastolic pressure, systolic performance, and chamber stiffness. Sitagliptin treatment also attenuated cardiac remodeling and cardiomyocyte apoptosis and minimized pulmonary congestion. Conclusions—Collectively, the results presented herein associate circulating DPPIV activity with poorer cardiovascular outcomes in human and experimental HF. Moreover, the results demonstrate that long-term DPPIV inhibition mitigates the development and progression of HF in rats.
Journal of The American Society of Nephrology | 2014
Thaissa Dantas Pessoa; Luciene Cristina Gastalho Campos; Luciene Regina Carraro-Lacroix; Adriana Castello Costa Girardi; Gerhard Malnic
Na(+)-glucose cotransporter 1 (SGLT1)-mediated glucose uptake leads to activation of Na(+)-H(+) exchanger 3 (NHE3) in the intestine by a process that is not dependent on glucose metabolism. This coactivation may be important for postprandial nutrient uptake. However, it remains to be determined whether SGLT-mediated glucose uptake regulates NHE3-mediated NaHCO3 reabsorption in the renal proximal tubule. Considering that this nephron segment also expresses SGLT2 and that the kidneys and intestine show significant variations in daily glucose availability, the goal of this study was to determine the effect of SGLT-mediated glucose uptake on NHE3 activity in the renal proximal tubule. Stationary in vivo microperfusion experiments showed that luminal perfusion with 5 mM glucose stimulates NHE3-mediated bicarbonate reabsorption. This stimulatory effect was mediated by glycolytic metabolism but not through ATP production. Conversely, luminal perfusion with 40 mM glucose inhibited NHE3 because of cell swelling. Notably, pharmacologic inhibition of SGLT activity by Phlorizin produced a marked inhibition of NHE3, even in the absence of glucose. Furthermore, immunofluorescence experiments showed that NHE3 colocalizes with SGLT2 but not SGLT1 in the rat renal proximal tubule. Collectively, these findings show that glucose exerts a bimodal effect on NHE3. The physiologic metabolism of glucose stimulates NHE3 transport activity, whereas, supraphysiologic glucose concentrations inhibit this exchanger. Additionally, Phlorizin-sensitive SGLT transporters and NHE3 interact functionally in the proximal tubule.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Carla Luana Dinardo; Gabriela Venturini; Enhua H. Zhou; Ii-Sei Watanabe; Luciene Cristina Gastalho Campos; Rafael Dariolli; Joaquim Maurício da Motta-Leal-Filho; Valdemir Melechco Carvalho; Karina Helena Morais Cardozo; José Eduardo Krieger; Adriano M. Alencar; Alexandre C. Pereira
Vascular smooth muscle cells (VSMCs) are thought to assume a quiescent and homogeneous mechanical behavior after arterial tree development phase. However, VSMCs are known to be molecularly heterogeneous in other aspects and their mechanics may play a role in pathological situations. Our aim was to evaluate VSMCs from different arterial beds in terms of mechanics and proteomics, as well as investigate factors that may influence this phenotype. VSMCs obtained from seven arteries were studied using optical magnetic twisting cytometry (both in static state and after stretching) and shotgun proteomics. VSMC mechanical data were correlated with anatomical parameters and ultrastructural images of their vessels of origin. Femoral, renal, abdominal aorta, carotid, mammary, and thoracic aorta exhibited descending order of stiffness (G, P < 0.001). VSMC mechanical data correlated with the vessel percentage of elastin and amount of surrounding extracellular matrix (ECM), which decreased with the distance from the heart. After 48 h of stretching simulating regional blood flow of elastic arteries, VSMCs exhibited a reduction in basal rigidity. VSMCs from the thoracic aorta expressed a significantly higher amount of proteins related to cytoskeleton structure and organization vs. VSMCs from the femoral artery. VSMCs are heterogeneous in terms of mechanical properties and expression/organization of cytoskeleton proteins along the arterial tree. The mechanical phenotype correlates with the composition of ECM and can be modulated by cyclic stretching imposed on VSMCs by blood flow circumferential stress.
PLOS ONE | 2013
Rafael Dariolli; Vinicius Bassaneze; Juliana Sanajotti Nakamuta; Samantha Vieira Omae; Luciene Cristina Gastalho Campos; José Eduardo Krieger
We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs) can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs) with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90–95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29+; CD90+; CD44+; CD140b+; CD105+; and negative markers CD31−; CD34−; CD45− and SLA-DR−; n = 3). Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells) and cumulative population doubling increased constantly until Passage 10 (P10) in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining). Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.
Biochemical and Biophysical Research Communications | 2013
Valério Garrone Barauna; Pâmela R. Mantuan; Flávio de Castro Magalhães; Luciene Cristina Gastalho Campos; José Eduardo Krieger
We tested the hypothesis that AT1R blockade modulates the shear stress-induced (SS) synthesis of nitric oxide (NO) in endothelial cells (EC). The AT1R blocker Candesartan in the absence of the ligand angiotensin II (ang II) potentiated SS-induced NO synthesis accompanied by increased p-eNOS(Ser1177) and decreased p-eNOS(Thr495). Candesartan also inhibited SS-induced ERK activation and increased intracellular calcium transient in a time-dependent manner. To confirm the role of ERK to modulate p-eNOS(Thr495) and calcium to modulate p-eNOS(Ser1177), the MEK inhibitor U0126 and the calcium chelator BAPTA-AM were used, respectively. Pre-treatment of EC with U0126 completed abrogated basal and SS-induced ERK activation, inhibited p-eNOS(Thr495) and increased NO production by SS. On the other hand, pre-treatment of EC with BAPTA-AM decreased the effects of SS alone or in combination with Candesartan to induce p-eNOS(Ser1177) and partially inhibited the effects of Candesartan to potentiate NO release by SS. The AT1R blockers Losartan and Telmisartan were also tested but only Telmisartan potentiated NO synthesis and blocked SS-induced AT1R activation. Altogether, we provide evidence that Candesartan and Telmisartan potentiate SS-induced NO production even in the absence of the ligand ang II. This response requires both the inhibition of eNOS phosphorylation at its inhibitory residue Thr(495) as well as the increase of eNOS phosphorylation at its excitatory residue Ser(1177). In addition, the response is associated with inhibition of SS-induced ERK activation as well as increasing intracellular calcium transient. One may speculate that these yet undescribed events may contribute to the benefits of ARBs in cardiovascular diseases.
Biochemical and Biophysical Research Communications | 2013
Valério Garrone Barauna; Flávio de Castro Magalhães; Luciene Cristina Gastalho Campos; Rosana I. Reis; Satya P. Kunapuli; Claudio M. Costa-Neto; Ayumi Aurea Miyakawa; José Eduardo Krieger
Mechanotransduction enables cells to sense and respond to stimuli, such as strain, pressure and shear stress (SS), critical for maintenance of cardiovascular homeostasis or pathological states. The angiotensin II type 1 receptor (AT1R) was the first G protein-coupled receptor described to display stretch-induced activation in cardiomyocytes independent of its ligand Ang II. Here, we assessed whether SS (15 dynes/cm(2), 10 min), an important mechanical force present in the cardiovascular system, activates AT1R independent of its ligand. SS induced extracellular signal-regulated kinase (ERK) activation, used as a surrogate of AT1R activation, in Chinese hamster ovary cells expressing the AT1R (CHO+AT1) but not in wild type cells (CHO). AT1R dependent SS-induced ERK activation involves Ca(2+) inflow and activation of Gαq since Ca(2+) chelator EGTA or Gαq-specific inhibitor YM-254890 decreased SS-induced ERK activation. On the other hand, the activation of JAK-2 and Src, two intracellular signaling molecules independent of G protein activation, were not differently modulated in the presence of AT1R. Also, ERK activation by SS was observed in CHO cells expressing the mutated AT1R DRY/AAY, which has impaired ability to activate Gαq dependent intracellular signaling. Altogether we provided evidence that SS activates AT1R in the absence of its ligand by both a G protein-dependent and -independent pathways. The biological relevance of these observations deserves to be further investigated since the novel mechanisms described extend the knowledge of the activation of GPCRs independent of its traditional ligand.
AIP Advances | 2013
Luciene Cristina Gastalho Campos; M. H. D. Guimarães; Alda Martins Gonçalves; S. de Oliveira; Rodrigo G. Lacerda
ZnO nanowires have an enormous potential for applications as ultra-violet (UV) photodetectors. Their mechanism of photocurrent generation is intimately related with the presence of surface states where considerable efforts, such as surface chemical modifications, have been pursued to improve their photodetection capabilities. In this work, we report a step further in this direction demonstrating that the relative photosensitivity and quality factor (Q factor) of the photodetector are entirely tunable by an applied gate voltage. This mechanism enables UV photodetection selectivity ranging from wavelengths from tens of nanometers (full width at half maximum - FWHM) down to a narrow detection of 3 nm. Such control paves the way for novel applications, especially related to the detection of elements that have very sharp luminescence.
PLOS ONE | 2011
Valério Garrone Barauna; Luciene Cristina Gastalho Campos; Ayumi Aurea Miyakawa; José Eduardo Krieger
Objectives We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser1270 are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results Western blotting analysis showed that SS (18 h, 15 dyn/cm2) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra- or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser1270 compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser1270, consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser1270.
Cardiovascular Research | 2009
Luciene Cristina Gastalho Campos; Ayumi Aurea Miyakawa; Valério Garrone Barauna; Leandro Cardoso; Thaiz Ferraz Borin; Luís Alberto Dallan; José Eduardo Krieger
AIMS Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. METHODS AND RESULTS Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. CONCLUSION Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.