Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucília M. A. Lessa is active.

Publication


Featured researches published by Lucília M. A. Lessa.


American Journal of Physiology-renal Physiology | 2011

Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1

Renato O. Crajoinas; Felipe Theocharides Oricchio; Thaissa Dantas Pessoa; Bruna Piccolo Muniz Pacheco; Lucília M. A. Lessa; Gerhard Malnic; Adriana Castello Costa Girardi

Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 μg·kg(-1)·min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.


Journal of Hypertension | 2011

Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats.

Bruna Piccolo Muniz Pacheco; Renato O. Crajoinas; Gisele K. Couto; Ana P. Davel; Lucília M. A. Lessa; Luciana V. Rossoni; Adriana Castello Costa Girardi

Objectives The present study aimed to assess the effect of the specific dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin on blood pressure and renal function in young prehypertensive (5-week-old) and adult spontaneously hypertensive rats (SHRs; 14-week-old). Methods Sitagliptin (40 mg/kg twice daily) was given by oral gavage to young (Y-SHR + IDPPIV) and adult (A-SHR + IDPPIV) SHRs for 8 days. Kidney function was assessed daily and compared with age-matched vehicle-treated SHR (Y-SHR and A-SHR) and with normotensive Wistar–Kyoto rats (Y-WKY and A-WKY). Arterial blood pressure was measured in these animals at the end of the experimental protocol. Additionally, Na+/H+ exchanger isoform 3 (NHE3) function and expression in microvilli membrane vesicles were assessed in young animals. Results Mean arterial blood pressure of Y-SHR + IDPPIV was significantly lower than that of Y-SHR (104 ± 3 vs. 123 ± 5 mmHg, P < 0.01) and was similar to Y-WKY (94 ± 4 mmHg, P > 0.05). Compared to Y-SHR, Y-SHR + IDPPIV exhibited enhanced cumulative urinary flow and sodium excretion and decreased NHE3 activity and expression in proximal tubule microvilli. In the A-SHR, sitagliptin treatment had no significant effect on either renal function or arterial blood pressure. Conclusion Our data suggest that DPPIV inhibition attenuates blood pressure rising in young prehypertensive SHRs, partially by inhibiting NHE3 activity in renal proximal tubule.


American Journal of Physiology-renal Physiology | 2010

Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR

Renato O. Crajoinas; Lucília M. A. Lessa; Luciene Regina Carraro-Lacroix; Ana P. Davel; Bruna Piccolo Muniz Pacheco; Luciana V. Rossoni; Gerhard Malnic; Adriana Castello Costa Girardi

Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 ± 0.10 vs. 0.41 ± 0.04 nmol/cm(2)×s), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 ± 0.05 vs. 1.26 ± 0.11 nmol/cm(2)×s). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.


American Journal of Physiology-renal Physiology | 2012

Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule

Lucília M. A. Lessa; Luciene Regina Carraro-Lacroix; Renato O. Crajoinas; Camila N. A. Bezerra; Rafael Dariolli; Adriana Castello Costa Girardi; Manassés C. Fonteles; Gerhard Malnic

We previously demonstrated that uroguanylin (UGN) significantly inhibits Na(+)/H(+) exchanger (NHE)3-mediated bicarbonate reabsorption. In the present study, we aimed to elucidate the molecular mechanisms underlying the action of UGN on NHE3 in rat renal proximal tubules and in a proximal tubule cell line (LLC-PK(1)). The in vivo studies were performed by the stationary microperfusion technique, in which we measured H(+) secretion in rat renal proximal segments, through a H(+)-sensitive microelectrode. UGN (1 μM) significantly inhibited the net of proximal bicarbonate reabsorption. The inhibitory effect of UGN was completely abolished by either the protein kinase G (PKG) inhibitor KT5823 or by the protein kinase A (PKA) inhibitor H-89. The effects of UGN in vitro were found to be similar to those obtained by microperfusion. Indeed, we observed that incubation of LLC-PK(1) cells with UGN induced an increase in the intracellular levels of cAMP and cGMP, as well as activation of both PKA and PKG. Furthermore, we found that UGN can increase the levels of NHE3 phosphorylation at the PKA consensus sites 552 and 605 in LLC-PK(1) cells. Finally, treatment of LLC-PK(1) cells with UGN reduced the amount of NHE3 at the cell surface. Overall, our data suggest that the inhibitory effect of UGN on NHE3 transport activity in proximal tubule is mediated by activation of both cGMP/PKG and cAMP/PKA signaling pathways which in turn leads to NHE3 phosphorylation and reduced NHE3 surface expression. Moreover, this study sheds light on mechanisms by which guanylin peptides are intricately involved in the maintenance of salt and water homeostasis.


Cellular Physiology and Biochemistry | 2010

Role of CFTR and ClC-5 in Modulating Vacuolar H+-ATPase Activity in Kidney Proximal Tubule

Luciene Regina Carraro-Lacroix; Lucília M. A. Lessa; Camila N. A. Bezerra; Thaíssa D. Pessoa; Jackson Souza-Menezes; Marcelo M. Morales; Adriana Castello Costa Girardi; Gerhard Malnic

Background/Aims: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H+ ions performed by H+-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H+-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. Methods and Results: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO3- reabsorption was significantly reduced in the presence of the Cl- channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH4Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl-. siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H+-ATPase activity and V-ATPase B2 subunit expression. Conclusion: These results indicate a role of chloride in modulating plasma membrane H+-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity.


Brazilian Journal of Medical and Biological Research | 2009

Physiological implications of the regulation of vacuolar H+-ATPase by chloride ions

Luciene Regina Carraro-Lacroix; Lucília M. A. Lessa; Ricardo Fernandez; Gerhard Malnic

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.


Regulatory Peptides | 2009

Effect of renoguanylin on hydrogen/bicarbonate ion transport in rat renal tubules

Lucília M. A. Lessa; José Benedito Oliveira Amorim; Manassés C. Fonteles; Gerhard Malnic

Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 muM and 10 muM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 muM concentrations. Comparing control and REN concentration of 1 muM, JHCO(3)(-), nmol cm(-2) s(-1)-1,76+/-0,11(control)x1,29+/-0,08(REN 10 muM); P<0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 muM (JHCO(3)(-), nmol cm(-2) s(-)1-0.80+/-0.07(control)x0.60+/-0.06(REN 1 muM); P<0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na(+)/H(+)exchanger and H(+)-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.


Journal of Pharmacy and Pharmacology | 2005

Terpinen-4-ol: mechanisms of relaxation on rabbit duodenum

Nilberto R.F. Nascimento; José Henrique Leal-Cardoso; Lucília M. A. Lessa; Jarbas S. Roriz-Filho; Karina Moreira de Alencar Cunha; Manassés C. Fonteles

The effect of terpinen‐4‐ol was studied on rabbit duodenum in‐vitro. Terpinen‐4‐ol induced relaxation of the basal tonus (IC50 170.2 (95% confidence interval, 175–204) μm) with a maximal relaxant response of 180.4 ± 3.9% (n = 6) of the contraction induced by 60 mm [K+]. The maximal relaxation induced in control conditions was not affected (P>0.05) by pretreatment of the tissues with phentolamine (50 μm) or propranolol (10 μm), Ng nitro‐l‐arginine methyl ester (L‐NAME; 1 mm), 1H‐(1,2,4)‐oxadiazolo[4,3‐a]quinoxalin‐1‐one (ODQ; 100 μm), hexamethonium (1 mm), tetrodotoxin (1 μm), the mixture charybdotoxin‐apamin (1 μm), glibenclamide (10 μm), 4‐aminopyridine (10 μm) or tetraethylammonium (100 μm). In addition, terpinen‐4‐ol completely relaxed tissues precontracted with 60 mm [K+] solutions (IC50 325.9 (245.1–433.1) μm) and also blocked (IC50 154.7 (117.7–191.7) μm) the phasic component of this contraction. At a concentration of 195 and 650 μm it reduced by 41.3 ± 3.4% and 75.4 ± 3.1%, respectively the maximal contractile response to Ca2+ in depolarized duodenum. Terpinen‐4‐ol completely blocked the component of carbachol‐induced contraction, which was resistent to nifedipine (100 μm) pretreatment or to a Ca2+‐free solution. These data show that terpinen‐4‐ol relaxes intestinal smooth muscle and suggest that this effect is myogenic in nature and depends on calcium antagonism.


American Journal of Physiology-cell Physiology | 2014

Uroguanylin inhibits H-ATPase activity and surface expression in renal distal tubules by a PKG-dependent pathway.

Vanessa da Silva Lima; Renato O. Crajoinas; Luciene Regina Carraro-Lacroix; Alana N. Godinho; João L. G. Dias; Rafael Dariolli; Adriana Castello Costa Girardi; Manassés C. Fonteles; Gerhard Malnic; Lucília M. A. Lessa

Cumulative evidence suggests that guanylin peptides play an important role on electrolyte homeostasis. We have previously reported that uroguanylin (UGN) inhibits bicarbonate reabsorption in a renal distal tubule. In the present study, we tested the hypothesis that the bicarbonaturic effect of UGN is at least in part attributable to inhibition of H(+)-ATPase-mediated hydrogen secretion in the distal nephron. By in vivo stationary microperfusion experiments, we were able to show that UGN inhibits H(+)-ATPase activity by a PKG-dependent pathway because KT5823 (PKG inhibitor) abolished the UGN effect on distal bicarbonate reabsorption and H89 (PKA inhibitor) was unable to prevent it. The in vivo results were confirmed by the in vitro experiments, where we used fluorescence microscopy to measure intracellular pH (pHi) recovery after an acid pulse with NH4Cl. By this technique, we observed that UGN and 8 bromoguanosine-cGMP (8Br-cGMP) inhibited H(+)-ATPase-dependent pHi recovery and that the UGN inhibitory effect was abolished in the presence of the PKG inhibitor. In addition, by using RT-PCR technique, we verified that Madin-Darby canine kidney (MDCK)-C11 cells express guanylate cyclase-C. Besides, UGN stimulated an increase of both cGMP content and PKG activity but was unable to increase the production of cellular cAMP content and PKA activity. Furthermore, we found that UGN reduced cell surface abundance of H+-ATPase B1 subunit in MDCK-C11 and that this effect was abolished by the PKG inhibitor. Taken together, our data suggest that UGN inhibits H(+)-ATPase activity and surface expression in renal distal cells by a cGMP/PKG-dependent pathway.


Biochimica et Biophysica Acta | 2017

Effects of cardiotonic steroids on isolated perfused kidney and NHE3 activity in renal proximal tubules

Alana N. Godinho; Graciana T. Costa; Nádia O. Oliveira; Bruno A. Cardi; Daniel Esdras de Andrade Uchoa; Edilberto R. Silveira; Luis Eduardo M. Quintas; François Noël; Manassés C. Fonteles; Krishnamurti M. Carvalho; Cláudia F. Santos; Lucília M. A. Lessa; Nilberto R.F. Nascimento

Cardiotonic steroids (CS) are known as modulators of sodium and water homeostasis. These compounds contribute to the excretion of sodium under overload conditions due to its natriuretic property related to the inhibition of the renal Na+/K+-ATPase (NKA) pump α1 isoform. NHE3, the main route for Na+ reabsorption in the proximal tubule, depends on the Na+ gradient generated by the NKA pump. In the present study we aimed to investigate the effects of marinobufagin (MBG) and telocinobufagin (TBG) on the renal function of isolated perfused rat kidney and on the inhibition of NKA activity. Furthermore, we investigated the mechanisms for the cardiotonic steroid-mediated natriuretic effect, by evaluating and comparing the effects of bufalin (BUF), ouabain (OUA), MBG and TBG on NHE3 activity in the renal proximal tubule in vivo. TBG significantly increased GFR, UF, natriuresis and kaliuresis in isolated perfused rat kidney, and inhibits the activity of NKA at a much higher rate than MBG. By stationary microperfusion technique, the perfusion with BUF, OUA, TBG or MBG promoted an inhibitory effect on NHE3 activity, whereas BUF was the most effective agent, and demonstrated a dose-dependent response, with maximal inhibition at 50nM. Furthermore, our data showed the role of NKA-Src kinase pathway in the inhibition of NHE3 by CS. Finally, a downstream step, MEK1/2-ERK1/2 was also investigated, and, similar to Src inhibition, the MEK1/2 inhibitor (U0126) suppressed the BUF effect. Our findings indicate the involvement of NKA-SRc-Kinase-Ras-Raf-ERK1/2 pathway in the downregulation of NHE3 by cardiotonic steroids in the renal proximal tubule, promoting a reduction of proximal sodium reabsorption and natriuresis.

Collaboration


Dive into the Lucília M. A. Lessa's collaboration.

Top Co-Authors

Avatar

Gerhard Malnic

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alana N. Godinho

State University of Ceará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana P. Davel

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge