Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucinda S. McRobb is active.

Publication


Featured researches published by Lucinda S. McRobb.


Evidence-based Complementary and Alternative Medicine | 2015

Inhibitory Effect of a French Maritime Pine Bark Extract-Based Nutritional Supplement on TNF-α-Induced Inflammation and Oxidative Stress in Human Coronary Artery Endothelial Cells

Kristine C.Y. McGrath; Xiaohong Li; Lucinda S. McRobb; Alison K. Heather

Oxidative stress and inflammation, leading to endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. The popularity of natural product supplements has increased in recent years, especially those with purported anti-inflammatory and/or antioxidant effects. The efficacy and mechanism of many of these products are not yet well understood. In this study, we tested the antioxidant and anti-inflammatory effects of a supplement, HIPER Health Supplement (HIPER), on cytokine-induced inflammation and oxidative stress in human coronary artery endothelial cells (HCAECs). HIPER is a mixture of French maritime pine bark extract (PBE), honey, aloe vera, and papaya extract. Treatment for 24 hours with HIPER reduced TNF-α-induced reactive oxygen species (ROS) generation that was associated with decreased NADPH oxidase 4 and increased superoxide dismutase-1 expression. HIPER inhibited TNF-α induced monocyte adhesion to HCAECs that was in keeping with decreased expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and decreased nuclear factor-kappa B (NF-κB) activation. Further investigation of mechanism showed HIPER reduced TNF-α induced IκBα and p38 and MEK1/2 MAP kinases phosphorylation. Our findings show that HIPER has potent inhibitory effects on HCAECs inflammatory and oxidative stress responses that may protect against endothelial dysfunction that underlies early atherosclerotic lesion formation.


Atherosclerosis | 2014

Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E−/− mice

Bronwyn E. Brown; Christine H.J. Kim; F.R. Torpy; Christina A. Bursill; Lucinda S. McRobb; Alison K. Heather; Michael J. Davies; David van Reyk

OBJECTIVEnCarnosine has been shown to modulate triglyceride and glycation levels in cell and animal systems. In this study we investigated whether prolonged supplementation with carnosine inhibits atherosclerosis and markers of lesion stability in hyperglycaemic and hyperlipidaemic mice.nnnMETHODSnStreptozotocin-induced diabetic apo E(-/-) mice were maintained for 20 weeks, post-induction of diabetes. Half of the animals received carnosine (2g/L) in their drinking water. Diabetes was confirmed by significant increases in blood glucose and glycated haemoglobin, plasma triglyceride and total cholesterol levels, brachiocephalic artery and aortic sinus plaque area; and lower body mass.nnnRESULTSnProlonged carnosine supplementation resulted in a significant (∼20-fold) increase in plasma carnosine levels, and a significant (∼23%) lowering of triglyceride levels in the carnosine-supplemented groups regardless of glycaemic status. Supplementation did not affect glycaemic status, blood cholesterol levels or loss of body mass. In the diabetic mice, carnosine supplementation did not diminish measured plaque area, but reduced the area of plaque occupied by extracellular lipid (∼60%) and increased both macrophage numbers (∼70%) and plaque collagen content (∼50%). The area occupied by α-actin-positive smooth muscle cells was not significantly increased.nnnCONCLUSIONSnThese data indicate that in a well-established model of diabetes-associated atherosclerosis, prolonged carnosine supplementation enhances plasma levels, and has novel and significant effects on atherosclerotic lesion lipid, collagen and macrophage levels. These data are consistent with greater lesion stability, a key goal in treatment of existing cardiovascular disease. Carnosine supplementation may therefore be of benefit in lowering triglyceride levels and suppressing plaque instability in diabetes-associated atherosclerosis.


Aging | 2017

Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence

Lucinda S. McRobb; Matthew J. McKay; Jennifer R. Gamble; Michael Grace; Vaughan Moutrie; Estevam D. Santos; Vivienne S. Lee; Zhenjun Zhao; Mark P. Molloy; Marcus A. Stoodley

Cellular senescence is associated with aging and is considered a potential contributor to age-associated neurodegenerative disease. Exposure to ionizing radiation increases the risk of developing premature neurovascular degeneration and dementia but also induces premature senescence. As cells of the cerebrovascular endothelium are particularly susceptible to radiation and play an important role in brain homeostasis, we investigated radiation-induced senescence in brain microvascular endothelial cells (EC). Using biotinylation to label surface proteins, streptavidin enrichment and proteomic analysis, we analyzed the surface proteome of stress-induced senescent EC in culture. An array of both recognized and novel senescence-associated proteins were identified. Most notably, we identified and validated the novel radiation-stimulated down-regulation of the protease, a disintegrin and metalloprotease 10 (ADAM10). ADAM10 is an important modulator of amyloid beta protein production, accumulation of which is central to the pathologies of Alzheimers disease and cerebral amyloid angiopathy. Concurrently, we identified and validated increased surface expression of ADAM10 proteolytic targets with roles in neural proliferation and survival, inflammation and immune activation (L1CAM, NEO1, NEST, TLR2, DDX58). ADAM10 may be a key molecule linking radiation, senescence and endothelial dysfunction with increased risk of premature neurodegenerative diseases normally associated with aging.


Journal of Neurosurgery | 2016

Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations

Zhenjun Zhao; Michael S. Johnson; Biyi Chen; Michael Grace; Jaysree Ukath; Vivienne S. Lee; Lucinda S. McRobb; Lisa M. Sedger; Marcus A. Stoodley

OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation causes remarkable cellular changes in endothelial cells. Significant PS externalization is induced by radiation at doses of 15 Gy or higher, concomitant with a block in the cell cycle. Radiation-induced markers/targets may have high discriminating power to be harnessed in vascular targeting for AVM treatment.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2017

Estrogen Receptor Control of Atherosclerotic Calcification and Smooth Muscle Cell Osteogenic Differentiation

Lucinda S. McRobb; Kristine C.Y. McGrath; Tania Tsatralis; Eleanore C. Liong; Joanne T. M. Tan; Gillian Hughes; David J. Handelsman; Alison K. Heather

Objective— Vascular calcification is associated with increased risk of myocardial infarction and stroke. The objective of this work was to examine the ability of 17&bgr;-estradiol (E2) to stimulate calcification of vascular smooth muscle cells (VSMC) in vivo, using aged apolipoprotein E-null mice with advanced atherosclerotic lesions, and subsequently to explore underlying mechanisms in vitro. Approach and Results— Silastic E2 capsules were implanted into male and female apolipoprotein E-null mice aged 34 weeks. Plaque and calcified area were measured in the aortic sinus and innominate artery after 8 weeks. Immunohistochemical analysis examined expression of the estrogen receptors (estrogen receptor alpha and estrogen receptor beta [ER&bgr;]). VSMC expression of osteogenic markers was examined using digital polymerase chain reaction. Advanced atherosclerotic lesions were present in all mice at the end of 8 weeks. In both male and female mice, E2 increased calcified area in a site-specific manner in the aortic sinus independently of plaque growth or lipid levels and occurred in association with a site-specific decrease in the proportion of ER&bgr;-positive intimal cells. Calcified lesions expressed collagen I and bone sialoprotein, with decreased matrix Gla protein. In vitro, E2 suppressed ER&bgr; expression and increased VSMC mineralization, demonstrating increased collagen I and II, osteocalcin and bone sialoprotein, and reduced matrix Gla protein and osteopontin. Antagonism or RNA silencing of estrogen receptor alpha, ER&bgr;, or both further increased VSMC mineralization. Conclusions— We have demonstrated that E2 can drive calcification in advanced atherosclerotic lesions by promoting the differentiation of VSMC to osteoblast-like cells, a process which is augmented by inhibition of estrogen receptor alpha or ER&bgr; activity.


Radiation Research | 2017

Radiosurgery Alters the Endothelial Surface Proteome: Externalized Intracellular Molecules as Potential Vascular Targets in Irradiated Brain Arteriovenous Malformations

Lucinda S. McRobb; Vivienne S. Lee; Margaret Simonian; Zhenjun Zhao; Santhosh George Thomas; Markus Wiedmann; Jude V. Amal Raj; Michael Grace; Vaughan Moutrie; Matthew J. McKay; Mark P. Molloy; Marcus A. Stoodley

Stereotactic radiosurgery (SRS) is an established treatment for brain arteriovenous malformations (AVMs) that drives blood vessel closure through cellular proliferation, thrombosis and fibrosis, but is limited by a delay to occlusion of 2–3 years and a maximum treatable size of 3 cm. In this current study we used SRS as a priming tool to elicit novel protein expression on the endothelium of irradiated AVM vessels, and these proteins were then targeted with prothrombotic conjugates to induce rapid thrombosis and vessel closure. SRS-induced protein changes on the endothelium in an animal model of AVM were examined using in vivo biotin labeling of surface-accessible proteins and comparative proteomics. LC-MS/MS using SWATH acquisition label-free mass spectrometry identified 280 proteins in biotin-enriched fractions. The abundance of 56 proteins increased after irradiation of the rat arteriovenous fistula (20 Gy, ≥1.5-fold). A large proportion of intracellular proteins were present in this subset: 29 mitochondrial and 9 cytoskeletal. Three of these proteins were chosen for further validation based on previously published evidence for surface localization and a role in autoimmune stimulation: cardiac troponin I (TNNI3); manganese superoxide dismutase (SOD2); and the E2 subunit of the pyruvate dehydrogenase complex (PDCE2). Immunostaining of AVM vessels confirmed an increase in abundance of PDCE2 across the vessel wall, but not a measurable increase in TNNI3 or SOD2. All three proteins co-localized with the endothelium after irradiation, however, more detailed subcellular distribution could not be accurately established. In vitro, radiation-stimulated surface translocation of all three proteins was confirmed in nonpermeabilized brain endothelial cells using immunocytochemistry. Total protein abundance increased modestly after irradiation for PDCE2 and SOD2 but decreased for TNNI3, suggesting that radiation primarily affects subcellular distribution rather than protein levels. The novel identification of these proteins as surface exposed in response to radiation raises important questions about their potential role in radiation-induced inflammation, fibrosis and autoimmunity, but may also provide unique candidates for vascular targeting in brain AVMs and other vascular tissues.


Thrombosis Research | 2018

Stable thrombus formation on irradiated microvascular endothelial cells under pulsatile flow: pre-testing annexin V-thrombin conjugate for treatment of brain arteriovenous malformations

S. Subramanian; S.O. Ugoya; Zhenjun Zhao; Lucinda S. McRobb; Georges E. Grau; Valery Combes; David W. Inglis; Andrew J. Gauden; Vivienne S. Lee; Vaughan Moutrie; E.D. Santos; Marcus A. Stoodley

BACKGROUNDnOur goal is to develop a vascular targeting treatment for brain arteriovenous malformations (AVMs). Externalized phosphatidylserine has been established as a potential biomarker on the endothelium of irradiated AVM blood vessels. We hypothesize that phosphatidylserine could be selectively targeted after AVM radiosurgery with a ligand-directed vascular targeting agent to achieve localized thrombosis and rapid occlusion of pathological AVM vessels.nnnOBJECTIVEnThe study aim was to establish an in vitro parallel-plate flow chamber to test the efficacy of a pro-thrombotic conjugate targeting phosphatidylserine.nnnMETHODSnConjugate was prepared by Lys-Lys cross-linking of thrombin with the phosphatidylserine-targeting ligand, annexin V. Cerebral microvascular endothelial cells were irradiated (5, 15, and 25u202fGy) and after 1 or 3u202fdays assembled in a parallel-plate flow chamber containing whole human blood and conjugate (1.25 or 2.5u202fμg/mL). Confocal microscopy was used to assess thrombus formation after flow via binding and aggregation of fluorescently-labelled platelets and fibrinogen.nnnRESULTS AND CONCLUSIONSnThe annexin V-thrombin conjugate induced rapid thrombosis (fibrin deposition) on irradiated endothelial cells under shear stress in the parallel-plate flow device. Unconjugated, non-targeting thrombin did not induce fibrin deposition. A synergistic interaction between radiation and conjugate dose was observed. Thrombosis was greatest at the highest combined doses of radiation (25u202fGy) and conjugate (2.5u202fμg/mL). The parallel-plate flow system provides a rapid method to pre-test pro-thrombotic vascular targeting agents. These findings validate the translation of the annexin V-thrombin conjugate to pre-clinical studies.


Oncology Letters | 2018

Effects of FOXM1 inhibition and ionizing radiation on melanoma cells

Vivienne S. Lee; Lucinda S. McRobb; Vaughan Moutrie; Estavam D. Santos; Timothy L.T. Siu

Metastatic melanoma can be highly refractory to conventional radiotherapy and chemotherapy but combinatorial-targeted therapeutics are showing greater promise on improving treatment efficacy. Previous studies have shown that knockdown of Forkhead box M1 (FOXM1) can sensitize various tumor types to radiation-induced cell death. The effect of combining radiation with a small molecule FOXM1 inhibitor, Siomycin A, on growth, death and migration of a metastatic melanoma cell line (SK-MEL-28) that overexpresses this pleiotropic cell cycle regulator was investigated. Siomycin A (SIOA) was found to be a strong inducer of apoptosis, and inhibitor of proliferation and migration in a scratch wound assay in this cell line. Induction of apoptosis occurred at concentrations >1 µM in association with reductions in the constitutive FOXM1 and anti-apoptotic B-cell lymphoma 2 protein levels found in these cells. Single doses of ionizing radiation (0-40 Gy) delivered by linear accelerator caused inhibition of growth and migration without significant induction of cell death. Pretreatment with SIOA did not increase the sensitivity of this melanoma cell line to radiation as observed in other tumor types. These data confirm that as a single agent, SIOA is an effective inducer of cell death and inhibitor of migration in metastatic melanoma cells expressing constitutive FOXM1. In combination with radiation, SIOA pre-treatment, however, may not be of added benefit.


PLOS ONE | 2017

In vivo imaging of endothelial cell adhesion molecule expression after radiosurgery in an animal model of arteriovenous malformation.

Newsha Raoufi-Rad; Lucinda S. McRobb; Vivienne S. Lee; David Bervini; Michael Grace; Jaysree Ukath; Joshua Mchattan; Varun K. A. Sreenivasan; T. T. Hong Duong; Zhenjun Zhao; Marcus A. Stoodley

Focussed radiosurgery may provide a means of inducing molecular changes on the luminal surface of diseased endothelium to allow targeted delivery of novel therapeutic compounds. We investigated the potential of ionizing radiation to induce surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells (EC) in vitro and in vivo, to assess their suitability as vascular targets in irradiated arteriovenous malformations (AVMs). Cultured brain microvascular EC were irradiated by linear accelerator at single doses of 0, 5, 15 or 25 Gy and expression of ICAM-1 and VCAM-1 measured by qRT-PCR, Western, ELISA and immunocytochemistry. In vivo, near-infrared (NIR) fluorescence optical imaging using Xenolight 750-conjugated ICAM-1 or VCAM-1 antibodies examined luminal biodistribution over 84 days in a rat AVM model after Gamma Knife surgery at a single 15 Gy dose. ICAM-1 and VCAM-1 were minimally expressed on untreated EC in vitro. Doses of 15 and 25 Gy stimulated expression equally; 5 Gy was not different from the unirradiated. In vivo, normal vessels did not bind or retain the fluorescent probes, however binding was significant in AVM vessels. No additive increases in probe binding were found in response to radiosurgery at a dose of 15 Gy. In summary, radiation induces adhesion molecule expression in vitro but elevated baseline levels in AVM vessels precludes further induction in vivo. These molecules may be suitable targets in irradiated vessels without hemodynamic derangement, but not AVMs. These findings demonstrate the importance of using flow-modulated, pre-clinical animal models for validating candidate proteins for vascular targeting in irradiated AVMs.


Journal of Neurology, Neurosurgery, and Psychiatry | 2018

094 Vascular targeting of phosphatidylserine causing thrombotic occlusion in an arteriovenous malformation animal model

Marcus A. Stoodley; Andrew J. Gauden; Vivienne S. Lee; Sinduja Subramanian; Vaughan Moutrie; Zhenjun Zhao; Lucinda S. McRobb

Collaboration


Dive into the Lucinda S. McRobb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge