Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucio Nitsch is active.

Publication


Featured researches published by Lucio Nitsch.


Journal of Cell Biology | 2004

Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins

Simona Paladino; Daniela Sarnataro; Rudolf Pillich; Simona Tivodar; Lucio Nitsch; Chiara Zurzolo

An essential but insufficient step for apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in epithelial cells is their association with detergent-resistant microdomains (DRMs) or rafts. In this paper, we show that in MDCK cells both apical and basolateral GPI-APs associate with DRMs during their biosynthesis. However, only apical and not basolateral GPI-APs are able to oligomerize into high molecular weight complexes. Protein oligomerization begins in the medial Golgi, concomitantly with DRM association, and is dependent on protein–protein interactions. Impairment of oligomerization leads to protein missorting. We propose that oligomerization stabilizes GPI-APs into rafts and that this additional step is required for apical sorting of GPI-APs. Two alternative apical sorting models are presented.


Journal of Biological Chemistry | 2003

The Paired Domain-containing Factor Pax8 and the Homeodomain-containing Factor TTF-1 Directly Interact and Synergistically Activate Transcription

Tina Di Palma; Roberto Nitsch; Anna Mascia; Lucio Nitsch; Roberto Di Lauro; Mariastella Zannini

Pax genes encode for transcription factors essential for tissue development in many species. Pax8, the only member of the family expressed in the thyroid tissue, is involved in the morphogenesis of the gland and in the transcriptional regulation of thyroid-specific genes. TTF-1, a homeodomain-containing factor, is also expressed in the thyroid tissue and has been demonstrated to play a role in thyroid-specific gene expression. Despite the presence of Pax8 and TTF-1 also in a few other tissues, the simultaneous expression of the two transcription factors occurs only in the thyroid, supporting the idea that Pax8 and TTF-1 might cooperate to influence thyroid-specific gene expression. In this report, we describe a physical and functional interaction between these two factors. The fusion protein GST-Pax8 is able to bind TTF-1 present in thyroid or in non-thyroid cell extracts, and by using bacterial purified TTF-1 we demonstrate that the interaction is direct. By co-immunoprecipitation, we also show that the interaction between the two proteins occursin vivo in thyroid cells. Moreover, Pax8 and TTF-1 when co-expressed in HeLa cells synergistically activate Tg gene transcription. The synergism requires the N-terminal activation domain of TTF-1, and deletions of Pax8 indicate that the C-terminal domain of the protein is involved. Our results demonstrate a functional cooperation and a physical interaction between transcription factors of the homeodomain-containing and of the paired domain-containing gene families in the regulation of tissue-specific gene expression.


The EMBO Journal | 1992

Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line

Chiara Zurzolo; A. Le Bivic; Andrea Quaroni; Lucio Nitsch; Enrique Rodriguez-Boulan

Two biosynthetic pathways exist for delivery of membrane proteins to the apical surface of epithelial cells, direct transport from the trans‐Golgi network (TGN) and transcytosis from the basolateral membrane. Different epithelial cells vary in the expression of these mechanisms. Two extremes are MDCK cells, that use predominantly the direct route and hepatocytes, which deliver all apical proteins via the basolateral membrane. To determine how epithelial cells establish a particular targeting phenotype, we studied the apical delivery of endogenous dipeptidyl peptidase IV (DPPIV) at early and late stages in the development of monolayers of a highly polarized epithelial cell line derived from Fischer rat thyroid (FRT). In 1 day old monolayers, surface delivery of DPPIV from the TGN was unpolarized (50%/50%) but a large basal to apical transcytotic component resulted in a polarized apical distribution. In contrast, after 7 days of culture, delivery of DPPIV was mainly direct (85%) with no transcytosis of the missorted component. A basolateral marker, Ag 35/40 kD, on the other hand, was directly targeted (90–98%) at all times. These results indicate that the sorting machinery for apical proteins develops independently from the sorting machinery for basolateral proteins and that the sorting site relocates progressively from the basal membrane to the TGN during development of the epithelium. The transient expression of the transcytotic pathway may serve as a salvage pathway for missorted apical proteins when the polarized phenotype is being established.


Traffic | 2002

PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts.

Daniela Sarnataro; Simona Paladino; Vincenza Campana; Jacques Grassi; Lucio Nitsch; Chiara Zurzolo

PrPC is a glycosylphosphatidylinositol‐anchored protein expressed in neurons as well as in the cells of several peripheral tissues. Although the normal function of PrPC remains unknown, a conformational isoform called PrPSc (scrapie) has been proposed to be the infectious agent of transmissible spongiform encephalopathies in animals and humans. Where and how the PrPC to PrPSc conversion occurs in the cells is not yet known. Therefore, dissecting the intracellular trafficking of the wild‐type prion protein, as well as of the scrapie isoform, can be of major relevance to the pathogenesis of the diseases. In this report we have analyzed the exocytic pathway of transfected mouse PrPC in thyroid and kidney polarized epithelial cells. In contrast to the majority of glycosylphosphatidylinositol‐anchored proteins, we found that PrPC is localized mainly on the basolateral domain of the plasma membrane of both cell lines. This is reminiscent of the predominant somatodendritic localization found in neurons. However, similarly to apical glycosylphosphatidylinositol‐proteins, PrPC associates with detergent‐resistant microdomains, which have been suggested to have a role in apical sorting of glycosylphosphatidylinositol‐proteins, as well as in the conversion process of PrPC to PrPSc. In order to discriminate whether detergent‐resistant microdomains have a direct role in PrPSc conversion, or whether they are involved in the transport of the protein to the site of its conversion, we have examined the effect of disruption of detergent‐resistant microdomain association on PrPC intracellular traffic. Consistent with the unusual basolateral localization of this glycosylphosphatidylinositol‐linked protein, our data exclude a classical role for detergent‐resistant microdomains in the post‐trans‐Golgi network sorting and transport of PrPC to the plasma membrane.


BMC Genomics | 2007

Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

Anna Conti; Floriana Fabbrini; Paola D'Agostino; Rosa Negri; Dario Greco; Rita Genesio; Maria D'Armiento; Carlo Olla; D. Paladini; Mariastella Zannini; Lucio Nitsch

BackgroundThe Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21) genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy.ResultsApproximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21) were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects.ConclusionWe conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.


Experimental Cell Research | 1982

The culture of chick embryo chondrocytes and the control of their differentiated functions in vitro. I. Characterization of the chondrocyte-specific phenotypes.

Olga Capasso; Elisa Gionti; Gianfranco Pontarelli; F.Saverio Ambesi-Impiombato; Lucio Nitsch; Gianfranco Tajana; Ranieri Cancedda

We have maintained chick embryo chondrocytes in culture for more than 2 months, passaging the floating cells in the absence of ascorbic acid. Throughout the culture period some of the cells attached to the dish, assuming an epithelial-like morphology and subsequently giving rise to new floating cells. The interconversion of the two cell populations was highest in primaries and decreased with the aging of the culture. Cartilage cells synthesized pro-alpha 1 (II) collagen and sulphated proteoglycans in vitro; compared with floaters, the epithelial-like cells secreted relatively large amounts of fibronectin. When ascorbic acid was added to the medium, all cells attached, maintaining their rounded shape; in this condition the pro-alpha, (II) collagen was matured and collagen fibres were detectable outside the cells. Other specific proteins synthesized by the chondrocytes in culture were also identified. One of these, a 64 K collagenase-sensitive protein, was not related to the type II collagen and may represent a new collagen type.


Circulation | 2004

Tissue Factor Binding of Activated Factor VII Triggers Smooth Muscle Cell Proliferation via Extracellular Signal–Regulated Kinase Activation

Plinio Cirillo; Gaetano Calì; Paolo Golino; Paolo Calabrò; Lavinia Forte; Salvatore De Rosa; Mario Pacileo; Massimo Ragni; Francesco Scopacasa; Lucio Nitsch; Massimo Chiariello

Background—Tissue factor (TF) is the main initiator of coagulation in vivo. Recently, however, a role for TF as a cell receptor involved in signal transduction has been suggested. The aim of the present study was to assess whether activated factor VII (FVIIa) binding to TF could induce smooth muscle cell (SMC) proliferation and to clarify the possible intracellular mechanism(s) responsible for this proliferation. Methods and Results—Cell proliferation was induced by FVIIa in a dose-dependent manner, as assessed by [3H]thymidine incorporation and direct cell counting, whereas no response was observed with active site–inhibited FVIIa (FVIIai), which is identical to FVIIa but is devoid of enzymatic activity. Similarly, no proliferation was observed when binding of FVIIa to TF was prevented by the monoclonal anti-TF antibody AP-1. Activation of the p44/42 mitogen-activated protein (MAP) kinase (extracellular signal–regulated kinases 1 and 2 [ERK 1/2]) pathway on binding of FVIIa to TF was demonstrated by transient ERK phosphorylation in Western blots and by suppression of proliferation with the specific MEK (MAP kinase/ERK kinase) inhibitor UO126. ERK phosphorylation was not observed with FVIIai or when cells were pretreated with AP-1. Conclusions—These data indicate a specific effect by which binding of FVIIa to TF on the surface of SMCs induces proliferation via a coagulation-independent mechanism and possibly indicate a new link between coagulation, inflammation, and atherosclerosis.


Biochemical Journal | 2002

Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease

Aurora Bracale; Daniela Spalletti-Cernia; Mariarosaria Mastronicola; Francesco Castaldi; Roberta Mannucci; Lucio Nitsch; Giuseppe D'Alessio

Bovine seminal RNase (BS-RNase) is a dimeric RNase selectively cytotoxic for malignant cells. No information is available on its pathway from the extracellular matrix through the cytosol, where it degrades rRNA. An investigation of this pathway is reported here, carried out by immunofluorescence studies, by assessing the effects on BS-RNase cytotoxicity of drugs that affect specific intracellular compartments and by assaying the behaviour of a protein variant, BS-RNase-KDEL (BS-RNase in which a Lys-Asp-Glu-Leu peptide segment is inserted at the C-terminal ends of the subunit chains), endowed with a consensus sequence that directs proteins to the endoplasmic reticulum. BS-RNase was found to bind both normal and malignant cells and to be internalized by both cell types in endosome vesicles. Non-cytotoxic RNases, such as RNase A and a monomeric derivative of BS-RNase, did not bind to the cell surface and were not internalized. However, an engineered, dimeric and cytotoxic variant of RNase A bound effectively and permeated cells. The results of immunofluorescence studies, the effects of nigericin, monensin and brefeldin A on the cytotoxic action of seminal RNase, and the behaviour of the BS-RNase-KDEL variant, led to the conclusion that the pathway of BS-RNase in malignant cells from the extracellular matrix to the cytosol has two essential intracellular stations: endosomes and the trans-Golgi network. In normal cells, however, the protein does not progress from the endosomal compartment to the Golgi complex.


Biochimica et Biophysica Acta | 1997

Transfection of TTF-1 gene induces thyroglobulin gene expression in undifferentiated FRT cells

Anna Mascia; Mario De Felice; Concetta Lipardi; Raffaele Gentile; Gaetano Calı̀; Mariastella Zannini; Roberto Di Lauro; Lucio Nitsch

The thyroglobulin gene, the substrate for thyroid hormone biosynthesis, is not expressed in the FRT cell line, which, even though it manifests the polarised epithelial phenotype, does not express any of the thyroid functional properties. Two transcription factors, TTF-1 and Pax-8, have been implicated in thyroid specific expression of the thyroglobulin gene. FRT cells contain Pax-8 but they lack TTF-1. In this paper, we show that transfection of TTF-1 expression vectors in FRT cells results in activation of thyroglobulin gene expression. If the expression vector encoded for TTF-1-ER, a fusion gene coding for the entire TTF-1 protein fused to the hormone-binding domain of the steroid receptor, under the control of the RSV promoter, thyroglobulin gene expression was controlled by estrogen. These data provide a direct demonstration that TTF-1 activates the chromosomal thyroglobulin promoter. Since transfection of TTF-1 expression vectors in non-thyroid cell types did not result in thyroglobulin gene expression, it is suggested that Pax-8, in addition, perhaps, to a specific cellular environment, might be required for thyroid specific expression of the thyroglobulin gene.


Experimental Cell Research | 1984

Embedding in a collagen gel stabilizes the polarity of epithelial cells in thyroid follicles in suspension culture

Corrado Garbi; Lucio Nitsch; Seymour H. Wollman

Separated thyroid follicles are stable in suspension culture in Coons modified Hams F12 medium containing 0.5% calf serum. They resemble follicles in vivo except for the absence of a basal lamina. However, the epithelial cells reverse polarity and the follicles invert when the serum concentration is raised to 5%. A number of substances, especially components of extracellular matrix, were added to the medium to ascertain if they could stabilize the follicles against inversion in 5% serum. Cellular and plasma fibronectin, gelatin, heat-denatured collagen, methylcellulose and laminin did not stabilize. The addition to the medium of as little as 50 micrograms/ml of acid-soluble collagen prepared from calf skin or rat tail tendons resulted in the formation of small clouds of gel. Follicles embedded within the gel were stabilized. Follicles in the same dish but not embedded in the gel inverted. Stabilization was not specific for collagen, since follicles embedded in a plasma clot were also stabilized. A gel was not sufficient for stabilization, since embedding in an agarose gel did not stabilize. Ultrastructural studies indicate that adherence to a limited number of gelled fibers of collagen covering only a small fraction of the basal plasma membrane may be sufficient to stabilize and that a basal lamina formed in the presence of laminin but without added collagen does not stabilize.

Collaboration


Dive into the Lucio Nitsch's collaboration.

Top Co-Authors

Avatar

Rita Genesio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Conti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gaetano Calì

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonella Izzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Corrado Garbi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Melis

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Simona Paladino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge