Łucja Farnik
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Łucja Farnik.
Taiwanese Journal of Mathematics | 2017
Łucja Farnik; Tomasz Szemberg; Justyna Szpond; Halszka Tutaj-Gasińska
Starting with the pioneering work of Ein and Lazarsfeld [9] restrictions on values of Seshadri constants on algebraic surfaces have been studied by many authors [2,5,10,12,18,20,22,24]. In the present note we show how approximation involving continued fractions combined with recent results of Kuronya and Lozovanu on Okounkov bodies of line bundles on surfaces [13,14] lead to effective statements considerably restricting possible values of Seshadri constants. These results in turn provide strong additional evidence to a conjecture governing the Seshadri constants on algebraic surfaces with Picard number
Archiv der Mathematik | 2016
Łucja Farnik
1
International Journal of Algebra and Computation | 2017
Łucja Farnik; Janusz Gwoździewicz; Beata Hejmej; Magdalena Lampa-Baczyńska; Grzegorz Malara; Justyna Szpond
.
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg | 2016
Łucja Farnik
We study the Seshadri constants of ample line bundles on hyperelliptic surfaces. We obtain new lower bounds and compute the exact values of the Seshadri constants in some cases. Our approach uses results of Serrano (Math. Z. 203:527–533, 1990), Harbourne and Roé (J. Pure Appl. Alg. 212:616–627, 2008), Bastianelli (Manuscripta Math. 130:113–120, 2009), Knutsen, Syzdek and Szemberg (Math. Res. Lett. 16:711–719, 2009).
Geometriae Dedicata | 2016
Marcin Dumnicki; Łucja Farnik; A. Główka; M. Lampa-Baczyńska; G. Malara; Tomasz Szemberg; Justyna Szpond; Halszka Tutaj-Gasińska
The purpose of this work is to extend the classification of planar point configurations with low Waldschmidt constants for all values less than
Journal of Algebraic Combinatorics | 2018
Łucja Farnik; Jakub Kabat; Magdalena Lampa-Baczyńska; Halszka Tutaj-Gasińska
5/2
Mediterranean Journal of Mathematics | 2016
Łucja Farnik
. As a consequence we prove a conjecture of Dumnicki, Szemberg and Tutaj-Gasinska concerning initial sequences with low first differences.
Electronic Research Announcements in Mathematical Sciences | 2016
Halszka Tutaj-Gasińska; Łucja Farnik; Marcin Dumnicki
We study k-very ampleness of line bundles on blow-ups of hyperelliptic surfaces at r very general points. We obtain a numerical condition on the number of points for which a line bundle on the blow-up of a hyperelliptic surface at these r points gives an embedding of order k.
Rendiconti del Seminario Matematico della Università di Padova | 2016
Adam Czapliński; Marcin Dumnicki; Łucja Farnik; Janusz Gwoździewicz; Magdalena Lampa-Baczyńska; Grzegorz Malara; Tomasz Szemberg; Justyna Szpond; Halszka Tutaj-Gasińska
The purpose of this note is to study configurations of lines in projective planes over arbitrary fields having the maximal number of intersection points where three lines meet. We give precise conditions on ground fields
arXiv: Algebraic Geometry | 2018
Łucja Farnik; Francesco Galuppi; Luca Sodomaco; William Trok