Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucky Jain is active.

Publication


Featured researches published by Lucky Jain.


The New England Journal of Medicine | 2016

Antenatal Betamethasone for Women at Risk for Late Preterm Delivery

Cynthia Gyamfi-Bannerman; Elizabeth Thom; Sean C. Blackwell; Alan Tita; Uma M. Reddy; George R. Saade; Dwight J. Rouse; David S. McKenna; Erin A.S. Clark; John M. Thorp; Edward K. Chien; Alan M. Peaceman; Ronald S. Gibbs; Geeta K. Swamy; Mary E. Norton; Brian M. Casey; Steve N. Caritis; Jorge E. Tolosa; Yoram Sorokin; J.Peter VanDorsten; Lucky Jain

BACKGROUND Infants who are born at 34 to 36 weeks of gestation (late preterm) are at greater risk for adverse respiratory and other outcomes than those born at 37 weeks of gestation or later. It is not known whether betamethasone administered to women at risk for late preterm delivery decreases the risks of neonatal morbidities. METHODS We conducted a multicenter, randomized trial involving women with a singleton pregnancy at 34 weeks 0 days to 36 weeks 5 days of gestation who were at high risk for delivery during the late preterm period (up to 36 weeks 6 days). The participants were assigned to receive two injections of betamethasone or matching placebo 24 hours apart. The primary outcome was a neonatal composite of treatment in the first 72 hours (the use of continuous positive airway pressure or high-flow nasal cannula for at least 2 hours, supplemental oxygen with a fraction of inspired oxygen of at least 0.30 for at least 4 hours, extracorporeal membrane oxygenation, or mechanical ventilation) or stillbirth or neonatal death within 72 hours after delivery. RESULTS The primary outcome occurred in 165 of 1427 infants (11.6%) in the betamethasone group and 202 of 1400 (14.4%) in the placebo group (relative risk in the betamethasone group, 0.80; 95% confidence interval [CI], 0.66 to 0.97; P=0.02). Severe respiratory complications, transient tachypnea of the newborn, surfactant use, and bronchopulmonary dysplasia also occurred significantly less frequently in the betamethasone group. There were no significant between-group differences in the incidence of chorioamnionitis or neonatal sepsis. Neonatal hypoglycemia was more common in the betamethasone group than in the placebo group (24.0% vs. 15.0%; relative risk, 1.60; 95% CI, 1.37 to 1.87; P<0.001). CONCLUSIONS Administration of betamethasone to women at risk for late preterm delivery significantly reduced the rate of neonatal respiratory complications. (Funded by the National Heart, Lung, and Blood Institute and the Eunice Kennedy Shriver National Institute of Child Health and Human Development; ClinicalTrials.gov number, NCT01222247.).


The Journal of Pediatrics | 1991

Cardiopulmonary resuscitation of apparently stillborn infants: Survival and long-term outcome

Lucky Jain; Cynthia Ferre; Dharmapuri Vidyasagar; Shanta Nath; David Sheftel

To determine the outcome of apparently stillborn infants who received cardiopulmonary resuscitation, we studied the short- and long-term outcome of 93 infants who had an Apgar score of 0 at 1 minute of age and were resuscitated at birth. Sixty-two (66.6%) responded and left the delivery room alive; 26 (42%) of the 62 infants died in the neonatal period and 36 infants were discharged home; of the 36 infants, three subsequently died during infancy. Of the 33 survivors, ten were lost to follow-up after discharge. Developmental assessment of 23 of 33 long-term survivors revealed normal outcome in 14 (61.7%), abnormal results in 6 (26%), and suspect status in 3 (13%). Fifty-eight infants had an Apgar score of 0 at greater than or equal to 10 minutes of age and all except one died; the surviving infant has an abnormal developmental outcome. We conclude that 39% of apparently stillborn infants who were resuscitated survived beyond the neonatal period and that 61% of the 23 survivors who were available for developmental follow-up had normal development at the time of last examination. Survival was unlikely if there was no response after 10 minutes of resuscitation.


Annual Review of Physiology | 2009

The Contribution of Epithelial Sodium Channels to Alveolar Function in Health and Disease

Douglas C. Eaton; My N. Helms; Michael Koval; Hui Fang Bao; Lucky Jain

Amiloride-sensitive epithelial sodium channels (ENaC) play an important role in lung sodium transport. Sodium transport is closely regulated to maintain an appropriate fluid layer on the alveolar surface. Both alveolar type I and II cells have several different sodium-permeable channels in their apical membranes that play a role in normal lung physiology and pathophysiology. In many epithelial tissues, ENaC is formed from three subunit proteins: alpha, beta, and gamma ENaC. Part of the diversity of sodium-permeable channels in lung arises from assembling different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. Thus, lung epithelium has enormous flexibility to alter the magnitude of salt and water transport. In lung, ENaC is regulated by many transmitter and hormonal agents. Regulation depends upon the type of sodium channel but involves controlling the number of apical channels and/or the activity of individual channels.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Nitric oxide inhibits lung sodium transport through a cGMP-mediated inhibition of epithelial cation channels

Lucky Jain; Xi-Juan Chen; Lou Ann S. Brown; Douglas C. Eaton

We used the patch-clamp technique to study the effect of nitric oxide (NO) on a cation channel in rat type II pneumocytes [alveolar type II (AT II) cells]. Single-channel recordings from the apical surface of AT II cells in primary culture showed a predominant cation channel with a conductance of 20.6 +/- 1.1 (SE) pS (n = 9 cell-attached patches) and Na(+)-to-K+ selectivity of 0.97 +/- 0.07 (n = 7 cell-attached patches). An NO donor, S-nitrosoglutathione (GSNO; 100 microM), inhibited the basal cation-channel activity by 43% [open probability (Po), control 0.28 +/- 0.05 vs. GSNO 0.16 +/- 0.03; P < 0.001; n = 16 cell-attached patches], with no significant change in the conductance. GSNO reduced the Po by reducing channel mean open and increasing mean closed times. GSNO inhibition was reversed by washout. The inhibitory effect of NO was confirmed by using a second donor of NO, S-nitroso-N-acetylpenicillamine (100 microM; Po, control 0.53 +/- 0.05 vs. S-nitroso-N-acetylpenicillamine 0.31 +/- 0.04; -42%; P < 0.05; n = 5 cell-attached patches). The GSNO effect was blocked by methylene blue (a blocker of guanylyl cyclase; 100 microM), suggesting a role for cGMP. The permeable analog of cGMP, 8-bromo-cGMP (8-BrcGMP; 1 mM), inhibited the cation channel in a manner similar to GSNO (Po, control 0.38 +/- 0.06 vs. 8-BrcGMP 0.09 +/- 0.02; P < 0.05; n = 7 cell-attached patches). Pretreatment of cells with 1 microM KT-5823 (a blocker of protein kinase G) abolished the inhibitory effect of GSNO. The NO inhibition of channels was not due to changes in cell viability. Intracellular cGMP was found to be elevated in AT II cells treated with NO (control 13.4 +/- 3.6 vs. GSNO 25.4 +/- 4.1 fmol/ml; P < 0.05; n = 6 cell-attached patches). We conclude that NO suppresses the activity of an Na(+)-permeant cation channel on the apical surface of AT II cells. This action appears to be mediated by a cGMP-dependent protein kinase.We used the patch-clamp technique to study the effect of nitric oxide (NO) on a cation channel in rat type II pneumocytes [alveolar type II (AT II) cells]. Single-channel recordings from the apical surface of AT II cells in primary culture showed a predominant cation channel with a conductance of 20.6 ± 1.1 (SE) pS ( n = 9 cell-attached patches) and Na+-to-K+selectivity of 0.97 ± 0.07 ( n = 7 cell-attached patches). An NO donor, S-nitrosoglutathione (GSNO; 100 μM), inhibited the basal cation-channel activity by 43% [open probability ( P o), control 0.28 ± 0.05 vs. GSNO 0.16 ± 0.03; P < 0.001; n = 16 cell-attached patches], with no significant change in the conductance. GSNO reduced the P o by reducing channel mean open and increasing mean closed times. GSNO inhibition was reversed by washout. The inhibitory effect of NO was confirmed by using a second donor of NO, S-nitroso- N-acetylpenicillamine (100 μM; P o, control 0.53 ± 0.05 vs. S-nitroso- N-acetylpenicillamine 0.31 ± 0.04; -42%; P < 0.05; n = 5 cell-attached patches). The GSNO effect was blocked by methylene blue (a blocker of guanylyl cyclase; 100 μM), suggesting a role for cGMP. The permeable analog of cGMP, 8-bromo-cGMP (8-BrcGMP; 1 mM), inhibited the cation channel in a manner similar to GSNO ( P o, control 0.38 ± 0.06 vs. 8-BrcGMP 0.09 ± 0.02; P < 0.05; n = 7 cell-attached patches). Pretreatment of cells with 1 μM KT-5823 (a blocker of protein kinase G) abolished the inhibitory effect of GSNO. The NO inhibition of channels was not due to changes in cell viability. Intracellular cGMP was found to be elevated in AT II cells treated with NO (control 13.4 ± 3.6 vs. GSNO 25.4 ± 4.1 fmol/ml; P < 0.05; n = 6 cell-attached patches). We conclude that NO suppresses the activity of an Na+-permeant cation channel on the apical surface of AT II cells. This action appears to be mediated by a cGMP-dependent protein kinase.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Antisense oligonucleotides against the α-subunit of ENaC decrease lung epithelial cation-channel activity

Lucky Jain; Xi-Juan Chen; Bela Malik; Otor Al-Khalili; Douglas C. Eaton

Amiloride-sensitive Na+ transport by lung epithelia plays a critical role in maintaining alveolar Na+ and water balance. It has been generally assumed that Na+transport is mediated by the amiloride-sensitive epithelial Na+ channel (ENaC) because molecular biology studies have confirmed the presence of ENaC subunits α, β, and γ in lung epithelia. However, the predominant Na+-transporting channel reported from electrophysiological studies by most laboratories is a nonselective, high-conductance channel that is very different from the highly selective, low-conductance ENaC reported in other tissues. In our laboratory, single-channel recordings from apical membrane patches from rat alveolar type II (ATII) cells in primary culture reveal a nonselective cation channel with a conductance of 20.6 ± 1.1 pS and an Na+-to-K+selectivity of 0.97 ± 0.07. This channel is inhibited by submicromolar concentrations of amiloride. Thus there is some question about the relationship between the gene product observed with single-channel methods and the cloned ENaC subunits. We have employed antisense oligonucleotide methods to block the synthesis of individual ENaC subunit proteins (α, β, and γ) and determined the effect of a reduction in the subunit expression on the density of the nonselective cation channel observed in apical membrane patches on ATII cells. Treatment of ATII cells with antisense oligonucleotides inhibited the production of each subunit protein; however, single-channel recordings showed that only the antisense oligonucleotide targeting the α-subunit resulted in a significant decrease in the density of nonselective cation channels. Inhibition of the β- and γ-subunit proteins alone or together did not cause any changes in the observed channel density. There were no changes in open probability or other channel characteristics. These results support the hypothesis that the α-subunit of ENaC alone or in combination with some protein other than the β- or γ-subunit protein is the major component of lung alveolar epithelial cation channels.


Annals of the American Thoracic Society | 2014

Bronchopulmonary Dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases

Cindy McEvoy; Lucky Jain; Barbara Schmidt; Steven H. Abman; Eduardo Bancalari; Judy L. Aschner

Bronchopulmonary dysplasia (BPD) is the most common complication of extreme preterm birth. Infants who develop BPD manifest aberrant or arrested pulmonary development and can experience lifelong alterations in cardiopulmonary function. Despite decades of promising research, primary prevention of BPD has proven elusive. This workshop report identifies current barriers to the conduct of primary prevention studies for BPD and causal pathways implicated in BPD pathogenesis. Throughout, we highlight promising areas for research to improve understanding of normal and aberrant lung development, distinguish BPD endotypes, and ascertain biomarkers for more targeted therapeutic approaches to prevention. We conclude with research recommendations and priorities to accelerate discovery and promote lung health in infants born preterm.


Journal of Biological Chemistry | 2008

Redox Regulation of Epithelial Sodium Channels Examined in Alveolar Type 1 and 2 Cells Patch-clamped in Lung Slice Tissue

My N. Helms; Lucky Jain; Julie Self; Douglas C. Eaton

The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 ± 3.2 and 22.5 ± 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 μm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 ± 0.26 to 0.82 ± 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{\overline{.}}\) \end{document}) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{\overline{.}}\) \end{document} and NO signaling plays an important role in maintaining lung fluid balance.


Proceedings of the American Thoracic Society | 2010

Regulation of Epithelial Sodium Channel Trafficking by Ubiquitination

Douglas C. Eaton; Bela Malik; Hui-Fang Bao; Ling Yu; Lucky Jain

Amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC) play a crucial role in Na(+) transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na(+) transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, alpha, beta, and gamma. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta and gamma subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2-mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Rac1-mediated NADPH oxidase release of O2− regulates epithelial sodium channel activity in the alveolar epithelium

Yoshizumi Takemura; Preston Goodson; Hui Fang Bao; Lucky Jain; My N. Helms

We examine whether alveolar cells can control release of O(2)(-) through regulated NADPH oxidase (NOX) 2 (NOX2) activity to maintain lung fluid homeostasis. Using FACS to purify alveolar epithelial cells, we show that type 1 cells robustly express each of the critical NOX components that catalyze the production of O(2)(-) (NOX2 or gp91(phox), p22(phox), p67(phox), p47(phox), and p40(phox) subunits) as well as Rac1 at substantially higher levels than type 2 cells. Immunohistochemical labeling of lung tissue shows that Rac1 expression is cytoplasmic and resides near the apical surface of type 1 cells, whereas NOX2 coimmunoprecipitates with epithelial sodium channel (ENaC). Since Rac1 is a known regulator of NOX2, and hence O(2)(-) release, we tested whether inhibition or activation of Rac1 influenced ENaC activity. Indeed, 1 microM NSC23766 inhibition of Rac1 decreased O(2)(-) output in lung cells and significantly decreased ENaC activity from 0.87 +/- 0.16 to 0.52 +/- 0.16 [mean number of channels (N) and single-channel open probability (P(o)) (NP(o)) +/- SE, n = 6; P < 0.05] in type 2 cells. NSC23766 (10 microM) decreased ENaC NP(o) from 1.16 +/- 0.27 to 0.38 +/- 0.10 (n = 6 in type 1 cells). Conversely, 10 ng/ml EGF (a known stimulator of both Rac1 and O(2)(-) release) increased ENaC NP(o) values in both type 1 and 2 cells. NP(o) values increased from 0.48 +/- 0.21 to 0.91 +/- 0.28 in type 2 cells (P < 0.05; n = 10). In type 1 cells, ENaC activity also significantly increased from 0.40 +/- 0.15 to 0.60 +/- 0.23 following EGF treatment (n = 7). Sequestering O(2)(-) using 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) compound prevented EGF activation of ENaC in both type 1 and 2 cells. In conclusion, we report that Rac1-mediated NOX2 activity is an important component in O(2)(-) regulation of ENaC.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Nadph oxidase regulates alveolar epithelial sodium channel activity and lung fluid balance in vivo via O2− signaling

Preston Goodson; Amrita Kumar; Lucky Jain; Kousik Kundu; Niren Murthy; Michael Koval; My N. Helms

To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2(-/-) mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity.

Collaboration


Dive into the Lucky Jain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshizumi Takemura

Kyoto Prefectural University of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge