Lucy Byrnes
National University of Ireland, Galway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucy Byrnes.
Biogerontology | 2002
Ronan T. Bree; Catherine Stenson-Cox; Maura Grealy; Lucy Byrnes; Adrienne M. Gorman; Afshin Samali
Cellular longevity refers to the lifespan of an individual cell. Normal cells have a finite lifespan and typically die by undergoing apoptosis, or enter into a state of irreversible growth arrest, termed replicative senescence, at the end of that lifespan. The lifespan of a cell is a balance between pro-survival/anti-apoptotic and pro-apoptotic death-promoting factors. The role of heat shock proteins, Bcl-2 family members, antioxidant molecules, and telomere length and telomerase activity in the regulation of apoptosis and replicative senescence, will be discussed.
Developmental Biology | 2009
Eva D. Martin; Miriam A. Moriarty; Lucy Byrnes; Maura Grealy
Plakoglobin, or gamma-catenin, is found in both desmosomes and adherens junctions and participates in Wnt signalling. Mutations in the human gene are implicated in the congenital heart disorder, arrhythmogenic right ventricular cardiomyopathy (ARVC), but the signalling effects of plakoglobin loss in ARVC have not been established. Here we report that knockdown of plakoglobin in zebrafish results in decreased heart size, reduced heartbeat, cardiac oedema, reflux of blood between heart chambers and a twisted tail. Wholemount in situ hybridisation shows reduced expression of the heart markers nkx2.5 at 24 hours post fertilisation (hpf), and cmlc2 and vmhc at 48 hpf, while there is lack of restriction of the valve markers notch1b and bmp4 at 48 hpf. Wnt target gene expression was examined by semi-quantitative RT-PCR and found to be increased in morphant embryos indicating that plakoglobin is antagonistic to Wnt signalling. Co-expression of the Wnt inhibitor, Dkk1, rescues the cardiac phenotype of the plakoglobin morphant. beta-catenin protein expression is increased in morphant embryos as is its colocalisation with E-cadherin in adherens junctions. Endothelial cells at the atrioventricular boundary of morphant hearts have an aberrant morphology, indicating problems with valvulogenesis. Morphants also have decreased numbers of desmosomes and adherens junctions in the intercalated discs. These results establish the zebrafish as a model for ARVC caused by loss of plakoglobin function and indicate that there are signalling as well as structural consequences of this loss.
The International Journal of Developmental Biology | 2008
Eamon Geoghegan; Lucy Byrnes
The recent discovery that it is possible to directly reprogramme somatic cells to an embryonic stem (ES) cell-like pluripotent state, by retroviral transduction of just four genes (Oct3/4, Sox2, c-Myc and Klf4), represents a major breakthrough in stem cell research. The reprogrammed cells, known as induced pluripotent stem (iPS) cells, possess many of the properties of ES cells, and represent one of the most promising sources of patient-specific cells for use in regenerative medicine. While the ultimate goal is the use of iPS cells in the treatment of human disease, much of the research to date has been carried out with murine cells, and improved mouse iPS cells have been shown to contribute to live chimeric mice that are germ-line competent. Very recently, it has been reported that iPS cells can be generated by three factors without c-Myc, and these cells give rise to chimeric mice with a reduced risk of tumour development.
Environmental Science & Technology | 2013
Stephen Cunningham; Margaret E. Brennan-Fournet; Deirdre M. Ledwith; Lucy Byrnes; Lokesh Joshi
Nanotechnology has vast potential for expanded development and novel application in numerous sectors of society. With growing use and applications, substantial production volumes and associated environmental release can be anticipated. Exposure effect of nanoparticles (NP) on biological systems may be intrinsic to their physicochemical properties introducing unknown associated risk. Herein, we expand the knowledge of health and environmental impact of silver nanoparticles (AgNPs), testing the acute toxicity of 14 AgNP preparations on developing zebrafish embryos (Danio rerio). Toxicological end points, including mortality, hatching rate, and heart rate were recorded. Concentration, stabilization agent and physicochemical properties were monitored as contributing outcome factors. Our findings indicate wide ranging LC50 24 h postfertilization values (0.487 ppm (0.315, 0.744 95% CI) to 47.89 ppm (18.45, 203.49 95% CI)), and indicate surface charge and ionic dissolution as key contributory factors in AgNP exposure outcome.
Biochemical and Biophysical Research Communications | 1987
Lucy Byrnes; Chi-Cheng Luo; Wen-Hsiung Li; Chao-yuh Yang; Lawrence Chan
Using an antibody against chicken apolipoprotein (apo) A-I, we identified multiple cDNA clones for the protein in two intestinal cDNA libraries in lambda gt11. The complete nucleotide sequence of chicken apoA-I cDNA was determined. The sequence predicts a mature protein of 240 amino acids, a 6-amino acid propeptide and an 18-amino acid signal peptide. Using a 32P-cDNA probe, we detected the presence of apoA-I mRNA in 21 day old chicken intestine, liver, kidney, spleen, breast muscle and brain. The primary sequence of apoA-I contains numerous tandem repeats of 11 and 22 residues in a manner similar to the mammalian proteins. Our analysis of apoA-I sequences from human, rabbit, dog, rat, and chicken indicates that the rate of amino acid substitution is considerably faster in the rat lineage than in other mammalian lineages.
The International Journal of Developmental Biology | 2010
Lori Hartnett; Catherine Glynn; Catherine M. Nolan; Maura Grealy; Lucy Byrnes
The insulin-like growth factor (IGF) family is essential for normal embryonic growth and development and it is highly conserved through vertebrate evolution. However, the roles that the individual members of the IGF family play in embryonic development have not been fully elucidated. This study focuses on the role of IGF-2 in zebrafish embryonic development. Two igf-2 genes, igf-2a and igf-2b, are present in the zebrafish genome. Antisense morpholinos were designed to knock down both igf-2 genes. The neural and cardiovascular defects in IGF-2 morphant embryos were then examined further using wholemount in situ hybridisation, TUNEL analysis and O-dianisidine staining. Knockdown of igf-2a or igf-2b resulted in ventralised embryos with reduced growth, reduced eyes, disrupted brain structures and a disrupted cardiovascular system, with igf-2b playing a more significant role in development. During gastrulation, igf-2a and igf-2b are required for development of anterior neural structures and for regulation of genes critical to dorsal-ventral patterning. As development proceeds, igf-2a and igf-2b play anti-apoptotic roles. Gene expression analysis demonstrates that igf-2a and igf-2b play overlapping roles in angiogenesis and cardiac outflow tract development. Igf-2b is specifically required for cardiac valve development and cardiac looping. Injection of a dominant negative IGF-1 receptor led to similar defects in angiogenesis and cardiac valve development, indicating IGF-2 signals through this receptor to regulate cardiovascular development. This is the first study describing two functional igf-2 genes in zebrafish. This work demonstrates that igf-2a and igf-2b are critical to neural and cardiovascular development in zebrafish embryos. The finding that igf-2a and igf-2b do not act exclusively in a redundant manner may explain why both genes have been stably maintained in the genome.
Development Genes and Evolution | 2006
Catherine M. Nolan; Karena McCarthy; Edward Eivers; Randy L. Jirtle; Lucy Byrnes
The endosome/lysosome system plays key roles in embryonic development, but difficulties posed by inaccessible mammalian embryos have hampered detailed studies. The accessible, transparent embryos of Danio rerio, together with the genetic and experimental approaches possible with this organism, provide many advantages over rodents. In mammals, mannose 6-phosphate receptors (MPRs) target acid hydrolases to endosomes and lysosomes, but nothing is known of acid hydrolase targeting in zebrafish. Here, we describe the sequence of the zebrafish cation-dependent MPR (CD-MPR) and cation-independent MPR (CI-MPR), and compare them with their mammalian orthologs. We show that all residues critical for mannose 6-phosphate (M6P) recognition are present in the extracellular domains of the zebrafish receptors, and that trafficking signals in the cytoplasmic tails are also conserved. This suggests that the teleost receptors possess M6P binding sites with properties similar to those of mammalian MPRs, and that targeting of lysosomal enzymes by MPRs represents an ancient pathway in vertebrate cell biology. We also determined the expression patterns of the CD-MPR and CI-MPR during embryonic development in zebrafish. Both genes are expressed from the one-cell stage through to the hatching period. In early embryos, expression is ubiquitous, but in later stages, expression of both receptors is restricted to the anterior region of the embryo, covering the forebrain, midbrain and hindbrain. The expression patterns suggest time- and tissue-specific functions for the receptors, with particular evidence for roles in neural development. Our study establishes zebrafish as a novel, genetically tractable model for in vivo studies of MPR function and lysosome biogenesis.
Gene | 1992
Lucy Byrnes; Frank Gannon
Two similar, but distinct, cDNAs for Atlantic salmon serum albumin have been isolated from the same salmon liver. Comparison between the asSA-1 and asSA-2 sequences reveals 1% overall sequence difference.
The International Journal of Developmental Biology | 2012
Miriam A. Moriarty; Rebecca Ryan; Pierce Lalor; Peter Dockery; Lucy Byrnes; Maura Grealy
The desmosomal armadillo protein plakophilin 2 is the only plakophilin expressed in the heart, and mutations in the human plakophilin 2 gene result in arrhythmogenic right ventricular cardiomyopathy. To investigate loss of function, we knocked down plakophilin 2 by morpholino microinjection in zebrafish. This resulted in decreased heart rate, cardiac oedema, blood pooling, a failure of the heart to pattern correctly and a twisted tail. Co-injection of plakophilin 2 mRNA rescued the morphant phenotype, indicating the specificity of the knockdown. Desmosome numbers were decreased in morphant hearts and the plaque and midline structures of the desmosomes in the intercalated discs were disrupted when examined by electron microscopy. cmlc2 and vmhc expression at 48 hours post-fertilization (hpf) showed incomplete looping of the heart in morphant embryos by whole mount in situ hybridization, and bmp4 expression was expanded into the ventricle. The domain of expression of the heart marker nkx2.5 at 24 hpf was expanded. At the 18 somite stage, expression of the cardiogenic gene lefty2 was abolished in the left cardiac field, with concomitant increases in bmp4, spaw and lefty1 expression, likely resulting in the looping defects. These results indicate that plakophilin 2 has both structural and signalling roles in zebrafish heart development.
DNA and Cell Biology | 2000
Catherine Stenson; Alan McNair; Lucy Byrnes; Madeline Murphy; Terry J. Smith; Frank Gannon
We report the isolation and characterization of a cDNA encoding an HNF-3 family member (as HNF-3) from Atlantic salmon (Salmo salar L). The important functional domains of HNF-3 proteins that have been characterized previously are revealed by segments of high identity along the alignment of the asHNF-3 with winged helix/forkhead amino acid sequences isolated from other species. A comparison of asHNF-3 cDNA and genomic DNA indicated that there were no introns present in the asHNF-3 gene. Expression of asHNF-3 protein in adult salmon tissues was not exclusive to liver but was also present in the pancreas and intestine. An RT-PCR analysis performed on salmon development showed that asHNF3 expression is detectable before gastrulation at the mid blastula transition stage. Functional analysis of the asHNF-3 protein using a characterized HNF-3 consensus binding site demonstrated that the protein can recognize and bind to specific HNF-3 consensus sequences. We also report the identification of a novel HNF3 binding site in the promoter of the Atlantic salmon transferrin gene.