Lucy Kananu Murungi
Jomo Kenyatta University of Agriculture and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucy Kananu Murungi.
PLOS ONE | 2014
Teresiah Njihia; Juliana Jaramillo; Lucy Kananu Murungi; Dickson Mwenda; Benedict Orindi; Hans-Michael Poehling; Baldwyn Torto
Coffee berries are known to release several volatile organic compounds, among which is the spiroacetal, conophthorin, an attractant for the coffee berry borer Hypothenemus hampei. Elucidating the effects of other spiroacetals released by coffee berries is critical to understanding their chemo-ecological roles in the host discrimination and colonization process of the coffee berry borer, and also for their potential use in the management of this pest. Here, we show that the coffee berry spiroacetals frontalin and 1,6-dioxaspiro [4.5] decane (referred thereafter as brocain), are also used as semiochemicals by the coffee berry borer for host colonization. Bioassays and chemical analyses showed that crowding coffee berry borers from 2 to 6 females per berry, reduced borer fecundity, which appeared to correlate with a decrease in the emission rates of conophthorin and frontalin over time. In contrast, the level of brocain did not vary significantly between borer- uninfested and infested berries. Brocain was attractive at lower doses, but repellent at higher doses while frontalin alone or in a blend was critical for avoidance. Field assays with a commercial attractant comprising a mixture of ethanol and methanol (1∶1), combined with frontalin, confirmed the repellent effect of this compound by disrupting capture rates of H. hampei females by 77% in a coffee plantation. Overall, our results suggest that the levels of frontalin and conophthorin released by coffee berries determine the host colonization behaviour of H. hampei, possibly through a ‘push-pull’ system, whereby frontalin acts as the ‘push’ (repellent) and conophthorin acting as the ‘pull’ (attractant). Furthermore, our results reveal the potential use of frontalin as a repellent for management of this coffee pest.
Pest Management Science | 2016
Juma J Jared; Lucy Kananu Murungi; John Wesonga; Baldwyn Torto
BACKGROUND Tetranychus evansi is an invasive pest of solanaceous crops in Africa, and in the field it differentially attacks edible African nightshades. The chemical basis for the differential attack on these plant species is largely unknown. Using bioassays and chemical analysis, we investigated the differential bioactivity of leaf extracts of three edible African nightshade species, Solanum sarrachoides, S. scabrum and S. villosum, on adult T. evansi females. RESULTS Only the bioactivity of the leaf extract of S. sarrachoides (LC50 7.44 mg mL(-1)) and that of its most polar fraction (LC50 5.44 mg mL(-1)) paralleled that of the positive control, neem oil (LC50 1.89 mg mL(-1)), across all doses tested. Liquid chromatography-quadruple time of flight-mass spectrometry identified a mixture of steroidal glycoalkaloids (SGAs), including α-solasonine, α-solamargine and derivatives of tomatine and demissine, which were neither detected in the crude extract nor in any of the fractions obtained from S. scabrum and S. villosum. CONCLUSION Our results suggest that the presence of SGAs may play a key role in the differential defence of edible African nightshades against attack by T. evansi. These findings may add to the plethora of environmentally friendly tools from natural plant products for management of T. evansi.
Pest Management Science | 2015
Juma J Jared; Lucy Kananu Murungi; John Wesonga; Baldwyn Torto
BACKGROUND Tetranychus evansi is an invasive pest of solanaceous crops in Africa, and in the field it differentially attacks edible African nightshades. The chemical basis for the differential attack on these plant species is largely unknown. Using bioassays and chemical analysis, we investigated the differential bioactivity of leaf extracts of three edible African nightshade species, Solanum sarrachoides, S. scabrum and S. villosum, on adult T. evansi females. RESULTS Only the bioactivity of the leaf extract of S. sarrachoides (LC50 7.44 mg mL(-1)) and that of its most polar fraction (LC50 5.44 mg mL(-1)) paralleled that of the positive control, neem oil (LC50 1.89 mg mL(-1)), across all doses tested. Liquid chromatography-quadruple time of flight-mass spectrometry identified a mixture of steroidal glycoalkaloids (SGAs), including α-solasonine, α-solamargine and derivatives of tomatine and demissine, which were neither detected in the crude extract nor in any of the fractions obtained from S. scabrum and S. villosum. CONCLUSION Our results suggest that the presence of SGAs may play a key role in the differential defence of edible African nightshades against attack by T. evansi. These findings may add to the plethora of environmentally friendly tools from natural plant products for management of T. evansi.
International Journal of Tropical Insect Science | 2011
Lucy Kananu Murungi; Markus Knapp; Daisy Salifu; John Wesonga; Aggrey Nyende; Peter Wafula Masinde; Baldwyn Torto
The tomato red spider mite Tetranychus evansi Baker & Pritchard is a serious pest of solanaceous plants worldwide. Management of this oligophagous pest in African nightshades has been a challenge to smallholder African farmers due to its high reproductive rate and rapid development of resistance to synthetic pesticides. The aim of the present study was to determine the influence of leaf trichomes on T. evansi by comparing its fecundity and movement on the leaf surfaces of five African nightshade species, namely Solanum sarrachoides Sendter, S. villosum Miller, S. tarderemotum Bitter, S. americanum Miller and S. scabrum Miller. Data were recorded in the laboratory at 23 ± 1°C, 50–70% relative humidity and a 12 h light:12 h dark photoperiod for the effect of trichome type and density of the abaxial leaf surface on mite fecundity. Distances travelled by mites on the leaf surface from the edge of a thumbtack pin inserted on the leaf were also recorded. Different trichomes, glandular and non-glandular types, were identified. There was a significant negative correlation of fecundity and distance walked by mites with the density of glandular trichomes. Significantly fewer eggs were laid on S. sarrachoides in comparison with the other Solanum species. The distance walked by mites was also significantly shorter in this species, indicating that higher densities of glandular trichomes interfere with mite movements. These results suggest that African nightshade genotypes differ in their levels of resistance to T. evansi, which is partially associated with differences in trichome types and their densities.
Scientific Reports | 2017
Ruth Kihika; Lucy Kananu Murungi; Danny Coyne; Margaret Ng’ang’a; Ahmed Hassanali; Peter E. A. Teal; Baldwyn Torto
Plant volatile signatures are often used as cues by herbivores to locate their preferred hosts. Here, we report on the volatile organic compounds used by the subterranean root-knot nematode (RKN) Meloidogyne incognita for host location. We compared responses of infective second stage juveniles (J2s) to root volatiles of three cultivars and one accession of the solanaceous plant, Capsicum annum against moist sand in dual choice assays. J2s were more attracted to the three cultivars than to the accession, relative to controls. GC/MS analysis of the volatiles identified common constituents in each plant, five of which were identified as α-pinene, limonene, 2-methoxy-3-(1-methylpropyl)-pyrazine, methyl salicylate and tridecane. We additionally identified thymol as being specific to the accession. In dose-response assays, a blend of the five components elicited positive chemotaxis (71–88%), whereas individual components elicited varying responses; Methyl salicylate (MeSA) elicited the highest positive chemotaxis (70–80%), α-pinene, limonene and tridecane were intermediate (54–60%), and 2-methoxy-3-(1-methylpropyl)-pyrazine the lowest (49–55%). In contrast, thymol alone or thymol combined with either the preferred natural plant root volatiles or the five-component synthetic blend induced negative chemotaxis. Our results provide insights into RKN-host plant interactions, creating new opportunities for plant breeding programmes towards management of RKNs.
PLOS ONE | 2016
Lucy Kananu Murungi; Hillary Kirwa; Daisy Salifu; Baldwyn Torto
Plant chemistry is an important contributor to the interaction with herbivores. Here, we report on a previously unknown role for foliar and glandular trichome volatiles in their interaction with the specialist herbivore of solanaceous plants, the tomato red spider mite Tetranychus evansi. We used various bioassays and chemical analyses including coupled gas chromatography-mass spectrometry (GC/MS) and liquid chromatography coupled to quadrupole time of flight mass spectrometry (LC-QToF-MS) to investigate this interaction between cultivated African nightshades and T. evansi. We show that, whereas morphologically different cultivated African nightshade species released similar foliar volatile organic compounds (VOCs) that attracted T. evansi, VOCs released from exudates of ruptured glandular trichomes of one nightshade species influenced local defense on the leaf surface. VOCs from ruptured glandular trichomes comprising mainly saturated and unsaturated fatty acids deterred T. evansi oviposition. Of the fatty acids, the unsaturated fatty acids accounted for >40% of the oviposition deterrent activity. Our findings point to a defense strategy in a plant, based on opposing roles for volatiles released by foliar and glandular trichomes in response to attack by a specialist herbivore.
Chemoecology | 2017
Teresiah Njihia; Baldwin Torto; Lucy Kananu Murungi; Janet Irungu; Dickson Mwenda; Régis Babin
The variegated coffee bug Antestiopsis thunbergii Gmelin is a key pest of Coffea arabica in East Africa. Although the bug feeds on various parts of the coffee plant, it has a strong preference for mature green berries which are essential for the bug to complete its life cycle, reproduce and enhance its longevity. To locate mature green coffee berries, we hypothesized that second instar nymphs, which are the most mobile and active feeding immature stage of the bug, must rely on key volatile compounds emitted by the host for recognition. We tested this hypothesis using behavioral and electrophysiological assays and chemical analysis. In olfactometer assays, the second instar nymphs were strongly attracted to volatiles emitted from mature green berries but avoided those from ripe coffee berries of C. arabica. Coupled gas chromatography–electroantennographic detection (GC/EAD) isolated five antenally active components from mature green berries volatiles, four of which were identified by coupled GC–mass spectrometry as toluene, anisole, methyl 3-ethyl-4-methylpentanoate and (5S,7S)-conophthorin. In concentration assays, in which second instar nymphs did not respond to toluene, they were strongly attracted to anisole, methyl 3-ethyl-4-methylpentanoate and (5S,7S)-conophthorin, and a blend from the three compounds at concentrations lower or equivalent to the natural volatile extract. Our results suggest that the blend from these three compounds allows host recognition in second instar nymphs of the variegated coffee bug and is a candidate kairomone for monitoring the pest in coffee plantations.
Journal of Agricultural and Food Chemistry | 2018
Lucy Kananu Murungi; Hillary Kirwa; Danny Coyne; Peter E. A. Teal; John J. Beck; Baldwyn Torto
The root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, is a serious pest of tomato ( Solanum lycopersicum) and spinach ( Spinacea oleracea) in sub-Saharan Africa. In East Africa these two crops are economically important and are commonly intercropped by smallholder farmers. The role of host plant volatiles in M. incognita interactions with these two commodities is currently unknown. Here, we investigate the olfactory basis of attraction of tomato and spinach roots by the infective second stage juveniles (J2s) of M. incognita. In olfactometer assays, J2s were attracted to root volatiles from both crops over moist sand (control), but in choice tests using the two host plants, volatiles of tomato roots were more attractive than those released by spinach. Root volatiles sampled by solid phase microextraction (SPME) fiber and analyzed by gas chromatography/mass spectrometry (GC/MS) identified a total of eight components, of which five (2-isopropyl-3-methoxypyrazine, 2-(methoxy)-3-(1-methylpropyl)pyrazine, tridecane, and α- and β-cedrene) occurred in the root-emitted volatiles of both plants, with three (δ-3-carene, sabinene, and methyl salicylate) being specific to tomato root volatiles. In a series of bioassays, methyl salicylate contributed strongly to the attractiveness of tomato, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to the attractiveness of spinach. M. incognita J2s were also more attracted to natural spinach root volatiles when methyl salicylate was combined than to spinach volatiles alone, indicating that the presence of methyl salicylate in tomato volatiles strongly contributes to its preference over spinach. Our results indicate that since both tomato and spinach roots are attractive to M. incognita, identifying cultivars of these two plant species that are chemically less attractive can be helpful in the management of root knot nematodes.
Journal of Agricultural and Food Chemistry | 2018
Peter K Njuguna; Lucy Kananu Murungi; Ayuka T. Fombong; Peter E. A. Teal; John J. Beck; Baldwyn Torto
The main hosts of the melon fly Zeugodacus cucurbitate are cultivated and wild cucurbitaceous plants. In eastern Africa, the melon fly is a major pest of the Solanaceae plant Solanum lycopersicum (tomato). We hypothesized that shared species-specific volatiles may play a role in host attraction. We tested this hypothesis by comparing the olfactory responses of the melon fly to Cucumis sativus (cucumber) (Cucurbitaceae) and tomato plant odors in behavioral and electrophysiological assays, followed by chemical analysis to identify the key compounds mediating the interactions. Our results identified 13 shared components between cucumber and tomato plant odors. A synthetic blend of seven of the shared components dominated by monoterpenes at concentrations mimicking the volatile bouquet of cucumber and tomato attracted both sexes of the melon fly. Our results suggest that the presence and quantity of specific compounds in host odors are the main predictors for host recognition in Z. cucurbitate.
Journal of Agricultural and Food Chemistry | 2018
Hillary Kirwa; Lucy Kananu Murungi; John J. Beck; Baldwyn Torto
Root exudates of plants mediate interactions with a variety of organisms in the rhizosphere, including root-knot nematodes (RKNs, Meloidogyne spp.) We investigated the responses of the motile stage second-stage juveniles (J2s) of Meloidogyne incognita to non-volatile components identified in the root exudate of tomato. Using stylet thrusting, chemotaxis assays, and chemical analysis, we identified specific metabolites in the root exudate that attract and repel J2s. Liquid chromatography quadrupole time-of-flight mass spectrometry analysis of bioactive fractions obtained from the root exudate revealed a high diversity of compounds, of which five were identified as the phytohormone zeatin (cytokinin), the flavonoids quercetin and luteolin, and alkaloids solasodine and tomatidine. In stylet thrusting and chemotaxis assays, the five compounds elicited concentration-dependent responses in J2s relative to 2% dimethyl sulfoxide (negative control) and methyl salicylate (positive control). These results indicate that J2 herbivory is influenced by root exudate chemistry and concentrations of specific compounds, which may have potential applications in RKN management.